APPENDIX F2

PHASE II ENVIRONMENTAL SITE ASSESSMENT

CONVERSE CONSULTANTS

Limited Phase II Environmental Site Assessment Report

Approximate 60 Acre Site Southeast Corner of Schaefer Avenue and Euclid Avenue Ontario, California

Converse Project No. 21-16-121-02 October 8, 2021

Prepared For:

RCCD, Inc. 8101 East Kaiser Boulevard Suite 140 Anaheim Hills, California 92808

Prepared By:

Converse Consultants 8333 Foothill Boulevard, Suite 128 Rancho Cucamonga, California 91730 October 8, 2021

Mr. Jason Lee RCCD Inc. 8101 East Kaiser Boulevard Anaheim Hills, California 92808

Subject: LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Approximate 60 Acre Site

Southeast Corner of Schaefer Avenue and Euclid Avenue

Ontario, California

Converse Project No. 21-16-121-02

Mr. Lee:

Converse Consultants (Converse) is pleased to submit the attached report that summarizes the activities and the results of a *Limited Phase II Environmental Site Assessment (Phase II ESA)* that was conducted at the referenced property.

We appreciate the opportunity to be of service. Should you have any questions or comments regarding this report, please contact Michael Van Fleet at (909) 796-0544 or Laura Tanaka at (626) 930-1261.

VAN FLEET No. 7869

CONVERSE CONSULTANTS

Michael Van Fleet, PG Senior Geologist

Dist.: 1/Addressee via Electronic Mail

Laura Tanaka

Principal Environmental Scientist

Table of Contents

		<u>P</u>	<u>age</u>								
1.0	INTR	ODUCTION	1								
2.0	BACKGROUND										
	2.1	Site Description and Features	2								
	2.2	Physical Setting	4								
	2.3	Site History and Land Use									
	2.4	Adjacent Property Land Use									
	2.5	Summary of Previous Assessment Reports	5								
3.0	WORK PERFORMED AND RATIONALE										
	3.1	Scope of Assessment	7 7								
	3.2	Soil Sample Collection	8								
	3.4	Soil Vapor Sample Collection	9								
	3.5	Field Quality Assurance/Quality Control									
	3.6	Chemical Analytical Methods	10								
4.0	PRES	PRESENTATION AND EVALUATION OF RESULTS									
	4.1	Subsurface Conditions	11								
	4.2	Analytical Results	11								
	4.3	Data Quality Assurance/Quality Control	13 13								

5.0	INTE	ERPRETATION AND CONCLUSIONS	14
	5.1	RECs and Potential Release Area(s)	14
	5.2	Conceptual Model Validation/Adequacy of Investigations	14
	5.3	Absence, Presence, Degree, Extent of Target Analytes	14
	5.4	Other Concerns	15
		5.4.1 Significant Assumptions	15
		5.4.2 Limitations and Exceptions	15
		5.4.3 Special Terms and Conditions	15
	5.5	Conclusions/Objectives Met	15
6.0	REC	OMMENDATIONS	18
7.0	REL	IANCE	19
8.0	REF	ERROR! BC	

FIGURES

Figure $\overline{1 -}$ Site Location Map

Figure 2 – Sample Location Map

TABLES

Table 1 – Summary of Analytical Results – Soil

Table 2 – Summary of Analytical Results – Soil Vapor

APPENDICES

Appendix A – Application for Authorization to Use

Appendix B - Analytical Reports

1.0 Introduction

This Limited Phase II Environmental Site Assessment (ESA) report has been prepared by Converse Consultants (Converse) for RCCD, Inc. The sampling was conducted at the approximate 60-acre site on the southeast corner of Schaefer Avenue and Euclid Avenue in the City of Ontario, San Bernardino County, California (Site). Converse was retained by RCCD Inc. (User) to conduct the Limited Phase II ESA at the Site (see Figure 1, Site Location Map). The scope of this assessment was completed in general accordance with the revised proposal dated August 30, 2021.

Converse generally followed the standard practices of the American Society for Testing Materials (ASTM) Designation: E1903-19 *Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process* (ASTM, E 1903-19). The purpose of conducting the assessment in accordance with ASTM E1903-19 is to acquire and evaluate information sufficient to achieve the objective(s) set forth by the *User* and Converse.

Converse completed a Phase I ESA dated July 29, 2021, for the Site. The assessment identified no evidence of recognized environmental conditions (RECs) in connection with the Site except for the following:

- Agricultural use from as early as 1938 is a REC due to potential residual contamination from agricultural chemical use.
- On-site dairy operations and associated chemicals, manure, and equipment, from as early as 1946 are RECs.

The objectives of this assessment were to:

- Evaluate RECs in connection with the Site that were identified during the prior Converse Phase I ESA.
- Identify if potential target analytes are present at concentrations greater than threshold criteria.

2.0 Background

2.1 Site Description and Features

Details in the following sections regarding the Site and surrounding areas were obtained from the July 29, 2021 Converse Phase I ESA.

2.1.1 Current Uses of the Site

The Site is owned by George R. Phillips of The John Te Velde Irrevocable Trust; Zwaantina Te Velde and George R. Phillips, Co Trustees, under Survivor's Trust, under The Harm and Zwaantina Te Velde Trust; and Artevel of California, LLC.

It is operated as two (2) dairy farms and a nursery (tenants).

2.1.2 Location and Legal Description

The Site is located at the southeast corner of Euclid Avenue and Schaefer Avenue, in the City of Ontario, California. The Site is located approximately 1.8-miles south of the California State Routes 60/83 interchange.

The Site consists of 11 parcels and is approximately 60-acres in size. The San Bernardino County Assessor's Parcel Numbers (APNs) and associated street addresses for the Site are:

Business Park APNs:

- APN 1053-071-01: No address
- APN 1053-071-02: 13813 and 13835 Euclid Avenue
- APN 1053-071-03: No address
- APN 1053-071-04: No address
- APN 1053-081-01: 7235, 7255, 7275, and 7277 Schaefer Avenue
- APN 1053-081-03: 7271 Schaefer Avenue
- APN 1053-081-04: No address
- APN 1053-211-01: No address
- APN 1053-211-02: No address

Mixed-Use APN:

APN 1053-281-08: No address

The legal description for the Site is as follows: LOTS 1, 2, 3, 16, 17, 18, 20, 21 AND 35 OF SECTION 18, TOWNSHIP 2 SOUTH, RANGE 7 WEST, SAN BERNARDINO BASE AND MERIDIAN, ACCORDING TO

MAP OF SUBDIVISION OF PART OF RANCHO SANTA ANA DEL CHINO, AS PER PLAT RECORDED IN BOOK 6, PAGE 15, OF MAPS, RECORDS OF SAID COUNTY.

EXCEPTING THEREFROM ANY PORTION LYING WITHIN EUCLID AVENUE 200 FEET WIDE, AS DESCRIBED IN SUPERIOR COURT CASE NO. 139648 AND CASE NO. 150425, A CERTIFIED COPY OF WHICH WAS RECORDED SEPTEMBER 13, 1972 AS INSTRUMENT NO. 614 IN BOOK 8019, PAGE 930 OF OFFICIAL RECORDS OF THE COUNTY OF SAN BERNARDINO, STATE OF CALIFORNIA.

2.1.3 Site and Vicinity General Characteristics

The Site is an irregular-shaped lot of agricultural land consisting of approximately 60 acres. The Site is generally level.

A goat cheese dairy operation occupies the northeastern portion of the Site along Schaefer Avenue (Drake Farm at 7235, 7255, and 7277 Schaefer Avenue). Pertinent structures include a milking barn, fenced areas with shade canopies for goats (animals present), an administrative/maintenance building, and storage barns. The eastern portion of the Drakes' tenant space, near the northeastern Site corner, also includes residential structures such as trailers and a single-family home. A vacant former dairy building adjoins the residential structures.

Approximately three (3) acres of the western portion of the Site along Euclid Avenue are occupied by Coco's Nursery (no address; western portion of APNs 1053-071-01 and 1053-071-02). The nursery consists of irrigated potted plants, stockpiles of potting soil, and storage sheds.

The remaining northern, northwestern, southern, eastern, and western portions of the Site are occupied by the Art Venegas Dairy (13835 Euclid Avenue; tenant). This tenant space encompasses plowed farmland near the intersection of Euclid and Schaefer Avenues on the northwest, and on the south towards Edison Avenue. A catch basin for runoff collection is located on the southwestern corner of the Site. A system of catch basins is also located on the eastern portion of the Site, south of Drakes' farm. The central portion of the Art Venegas Dairy includes fenced areas with shade canopies for cows (animals present), a maintenance shop area, and storage areas for farm/dairy equipment/vehicles. The Venegas' milking barn and associated residential and storage structures are located on the central-west portion of the Site along Euclid Avenue.

All structures within the Venegas' complex are associated with the address of 13835 Euclid Avenue, except for a maintenance shed for

Southern California Edison (SCE) pole-mounted transformer equipment (13813 Euclid Avenue), which is adjacent to the milking barn.

The surrounding area of the Site consists of residential, agricultural, and commercial uses. Commercial uses include a truck driving school, a church, retail stores, and restaurants.

2.2 Physical Setting

2.2.1 Topography

The Site is located approximately 700 to 720 feet above mean sea level with surface topography sloping towards the south (United States Geological Survey [USGS] Topographic Map, Ontario, California, 2012).

2.2.2 Geology

The Site is underlain by alluvium, lake, playa, and terrace deposits, unconsolidated and semi-consolidated (Division of Mines and Geology, Geologic Map of California, 2015).

2.2.3 Hydrogeology

According to the Chino Basin Watermaster Depth to Groundwater Contour Map, first groundwater at the Site was located between 125 to 150 feet below ground surface (bgs) in July 2016. According to the pertinent Groundwater Elevation Contour Map, the groundwater elevation was approximately 570 feet, and the direction of regional groundwater flow was to the south.

2.3 Site History and Land Use

According to historical sources, as early as 1897 the Site was undeveloped land. From as early as 1933, structures were evident along the northeastern and western Site lines, which were associated with agricultural operations by 1938.

Between 1946 and the present, the Site was used agriculturally, including one (1) dairy operation on the western portion of the Site, and another dairy operation on the northeastern portion of the Site.

From as early as 2006, the current day nursery operation on the southwestern portion of the Site was noted as well.

Adjacent Property Land Use

North: Schaefer Avenue, followed by corn crops.

Northeast: Schaefer Avenue, followed by plowed agricultural land.

Northwest: Schaefer Avenue and Euclid Avenue, followed by agricultural land.

South: A truck yard, a vacant parcel, and a storage yard.

Southeast: A residential structure (7226 Edison Avenue)

Southwest: Euclid Avenue, followed by warehouses (14058 Euclid Avenue).

East: A residential structure (7365 Schaefer Avenue), vacant land, and

"farmland, including equipment/vehicle storage yards."

West: Euclid Avenue, followed by a commercial center, including Subway,

Starbucks and Carl's Junior (7041, 7055, and 7069 Schaefer Avenue); a residential development (13817 Farmhouse Avenue); a trailer storage vard; and Robert R. Ford truck dealership (14042)

Euclid Avenue).

2.5 Summary of Previous Assessment Reports

Converse Consultants, Phase I Environmental Site Assessment Report, 60-Acre Property, Euclid Avenue and Schaefer Avenue, Ontario, California, July 29, 2021.

The report identified the following RECs in connection with the Site:

- Agricultural use from as early as 1938 is a REC due to potential residual contamination from agricultural chemical use.
- On-site dairy operations and associated chemicals, manure and equipment from as early as 1946 are RECs.

Converse recommended the following:

- Soil sampling over the Site. Areas to be assessed should include the farmland catch basins, maintenance areas, aboveground storage tank (AST; and drain underneath the AST) & underground storage tank (UST) areas, and livestock/manure areas.
- Containers of hazardous materials, equipment, and tires should be removed in accordance with applicable regulations.
- A methane assessment in accordance with the City of Ontario requirements should be conducted.

A Limited Phase II ESA Scope of Work was developed based on the User's needs.

3.0 Work Performed and Rationale

3.1 Scope of Assessment

A conceptual model was developed in order to screen the Site.

3.1.1 Target Analytes

Target analytes include volatile organic compounds (VOCs), total petroleum hydrocarbons (TPH), organochlorine pesticides (OCPs), arsenic, and metals in the soil and/or soil vapor due to the current and historical on-site dairy and agricultural operations.

3.1.2 Target Analytes First Entered the Environment

The target analytes would have first entered the environment by surface spills or releases to the surface soil, or leaks from a current on-site AST, or a historical on-site UST.

3.1.3 Environmental Media and Locations Most Likely to Have the Highest Concentrations of Target Analytes

The environmental media most likely to have the highest concentrations of the target analytes are soil and soil vapor.

This *Limited Phase II ESA* consisted of the following primary elements:

- A total of nine (9) borings (AST-1 and AST-2, UST -1 and UST-2, and AG-1 through AG-5) were completed.
 - One (1) boring (AST-1) was completed to a depth of 15 feet bgs.
 - One (1) boring (AST-2) was completed to a depth of 5 feet bgs.
 - Two (2) borings (UST-1 and UST-2) were completed to depths of 25 feet bgs.
 - Five (5) borings (AG-1 through AG-5) were completed to depths of 2 feet bgs.
- Soil samples were collected from the following depths:
 - -2, 5, 10 and 15 feet bgs from boring AST-1;
 - -0.5, 2 and 5 feet bgs from boring AST-2,
 - -5, 10, 15, 20 and 25 feet bgs from borings UST-1 and UST-2; and
 - 0.5 and 2 feet bgs from borings AG-1 through AG-5.

- Soil vapor samples were collected from depths of 10-feet bgs from borings AST-1 and UST-1.
- Analysis of soil and soil vapor samples was as follows:
 - Select soil samples from the AST and UST borings were analyzed in accordance with EPA Method 8260B for VOCs, EPA Method 8015M for TPH, and EPA Method 6010/7471A for metals.
 - All soil samples from the agricultural borings (AG-1 through AG-5), as well as the 0.5- and 2-feet bgs soil samples from boring AST-2, were analyzed in accordance with EPA Method 6010B for Arsenic and EPA Method 8081 for OCPs.
 - All soil vapor samples were analyzed in accordance with EPA Method TO-15 for VOCs.

3.2 Soil Sample Collection

Underground Services Alert (Dig Alert) was notified a minimum of 72 hours prior to commencing drilling activities.

On September 15, 2021, a total of nine (9) borings were completed by Interphase Environmental utilizing direct-push (Geoprobe) drilling methods. Boring locations were as follows:

- Boring AST-1 was completed in the vicinity of a 300-gallon diesel AST. The AST is mounted on a rack above a drain, which leads to a standpipe for flushing of a drainage pipe. The drainage pipe was broken approximately 5-feet below the ground surface, and approximately 20-feet east of the AST according to the occupant, Mr. Adrian Venegas of Art Venegas Dairy. Converse placed Boring AST-2 at the approximate location of the drainage pipe brake east of the AST as indicated by Mr. Venegas.
- Borings UST-1 and UST-2 were completed in the vicinity of a former UST location on the northeastern portion of the Site. The location was determined based on historical documentation from the San Bernardino County Fire Department and was confirmed by the occupant of this portion of the Site, Dr. Dan Drake of Drake Family Farms.
- Boring AG-1 was completed inside a coral for cows on the western portion of the Site (Art Venegas Dairy).
- Boring AG-2 was completed near the approximate center of an agricultural field on the southern portion of the Site (Art Venegas Dairy).
- Boring AG-3 was completed outside a coral for bulls on the northeastern portion of the Site.

- Boring AG-4 was completed near the approximate center of an agricultural field on the northeastern portion of the Site (Art Venegas Dairy).
- Boring AG-5 was completed near the approximate center of an agricultural field on the northwestern portion of the Site (Art Venegas Dairy).

Soil cores were continuously collected during the drilling process (where possible). Portions of the soils were collected into sealable plastic bags for lithologic descriptions and screened for VOCs using a photo-ionization detector (PID). It is noted that no VOC concentrations were detected with the PID, except for one transient detection of 5 parts per million (ppm) of VOCs during the collection of soil core AST-2, at approximately 2-feet bgs.

Soil samples for laboratory analysis were cut from the acetate sleeves at the appropriate depths. Encore sample containers were used to collect subsamples of soil from select sleeve in accordance with EPA Method 5035 for analysis for VOCs and TPH carbon chain.

3.4 Soil Vapor Sample Collection

Following the collection of soil samples, temporary soil vapor probes were set at depths of 10 feet bgs in borings AST-1 and UST-1. Soil vapor probes were constructed using a six-inch stainless steel vapor implant connected to ¼-inch Teflon tubing. The implants were surrounded by an approximate 1-foot sand pack that extended slightly above and below the implant. The remainder of each borehole was filled with hydrated bentonite granules.

After installation, the probes were allowed to equilibrate for approximately 2 hours before purging and sampling.

Prior to sampling, the probes were purged of approximately 1 liter of air using a syringe. After purging, samples were collected using 1-liter summa canisters. Purging and sampling were conducted at flow rates of approximately 200 milliliters per minute. Soil vapor sampling was completed in general accordance with the Advisory-Active Soil Gas Investigations by the California Department of Toxic Substances Control (DTSC) and RWQCB, dated July 2015.

3.5 Field Quality Assurance/Quality Control

The following quality assurance and quality control measures were taken to evaluate the quality of the data generated:

 Standard EPA sample handling protocol including chain-of-custody control were followed.

- New dedicated sampling equipment (acetate sleeves, Encore containers, and Teflon tubing) were used for the collection of samples.
- Reusable sampling equipment (cutting shoe) was decontaminated between uses.
- A shut-in test was conducted prior to the collection of soil vapor samples to evaluate the integrity of the fitting.

3.6 Chemical Analytical Methods

All samples were submitted under chain of custody documentation to Enthalpy Analytical in Orange, California. Enthalpy Analytical is certified by the State of California Environmental Laboratory Accreditation Program (ELAP) for the analyses conducted.

Select samples of soil from the AST and UST borings were analyzed in accordance with EPA Method 8260B for VOCs, EPA Method 8015M for TPH, and EPA Method 6010/7471A for metals.

All soil samples from the agricultural borings (AG-1 through AG-5), as well as the 0.5- and 2-feet bgs soil samples from boring AST-2, were analyzed in accordance with EPA Method 6010B for Arsenic and EPA Method 8081 for OCPs.

Soil vapor samples were analyzed for VOCs in accordance with EPA Method TO-15.

4.0 Presentation and Evaluation of Results

4.1 Subsurface Conditions

During drilling activities, subsurface soils were observed to be generally consistent across the Site. Soil types generally consisted of brown sandy silts in the upper 5 feet, and fine-grained silty sand with minor amounts of clay between 5 and the maximum depth assessed of 25-feet bgs. Red-brown coloring was noted in one (1) soil sample from boring UST-2, at 25-feet bgs.

No stained or odorous soils were observed. The moisture content was low.

Groundwater was not encountered in any of the borings to maximum depths of 25 feet.

4.2 Analytical Results

A summary of the results is provided below. Analytical results were compared to the San Francisco Bay RWQCB's Environmental Screening Levels (ESLs), and screening levels (SLs) based on the Department of Toxic Substances Control (DTSC) Human Health Risk Assessment (HHRA) Note 3 and/or EPA Regional Screening Levels (RSLs). The results for metals were also compared to State and Federal hazardous waste screening levels. Copies of the laboratory analytical reports are included in Appendix B.

4.2.1 Soil Samples

All reported concentrations of arsenic are above the screening levels for residential and for commercial land use of 0.067 milligrams per kilogram (mg/kg) and 0.31 mg/kg, respectively, but below the applicable regional background concentration of 12 mg/kg, established by DTSC.

Lead was reported in all nine (9) samples analyzed for metals, at concentrations ranging from 5.1 to 12 mg/kg. All reported concentrations are less than the DTSC SL for lead in a residential land use scenario of 80 mg/kg.

All other reported metals concentrations were less than their respective screening levels for both residential and commercial land use scenarios. All reported values were less than their respective hazardous waste disposal criteria.

Concentrations of TPH in the diesel range were reported in four (4) samples (UST-1-5, UST-1-15, UST-2-10, and UST-2-15). The concentrations in UST-1-15 (4,400 mg/kg) and UST-2-15 (1,200 mg/kg) were at or above the screening levels for residential and for commercial land use of 260 mg/kg and 1,200 mg/kg, respectively.

Concentrations of VOCs and TPH in the gasoline and heavy oil ranges were not reported in any of the samples analyzed.

Concentrations of three (3) OCPs were detected one or more samples from boring locations AST-2, AG-4, and AG-5. Dieldrin was reported in at a concentration of 0.015 mg/kg (15 micrograms per kilogram (μ g/kg)). Maximum concentrations of DDE and DDT were reported at 0.41 and 0.031 mg/kg, respectively. All detected concentrations were below their respective screening levels for residential land use and applicable hazardous waste disposal criteria.

Tabulated data for soil samples is presented in Table 1.

4.2.2 Soil Vapor Samples

A total of 15 VOCs were detected in soil vapor sample AST-1-10, and a total of 12 VOCs were detected in soil vapor sample UST-1-10. Tabulated soil vapor sample data is presented in Table 2.

With the exception of benzene, ethylbenzene, and m,p-xylenes, the maximum concentrations of reported VOCs detected were below their ESLs and SLs for both residential and commercial land uses.

- Concentrations of benzene were reported in soil vapor samples AST-1-10 and UST-1-10 at 720 and 510 micrograms per cubic meter (µg/m³), respectively. The reported concentrations are more than the screening levels for both residential and commercial land uses scenarios of 3.2 and 14 µg/m³, respectively.
- Concentrations of ethylbenzene were reported in soil vapor samples AST-1-10 and UST-1-10 at 800 and 580 µg/m³, respectively. The reported concentrations are more than the screening levels for both residential and commercial land uses scenarios of 37 and 160 µg/m³.
- Concentrations of m,p-xylenes were reported in soil vapor samples AST-1-10 and UST-1-10 at 3,400 and 2,300 μg/m³, respectively. The reported concentration in sample AST-1-10 is more than the residential screening level of 3,300 μg/m³, but less than the commercial screening level of 15,000 μg/m³.

4.3 Data Quality Assurance/Quality Control

4.3.1 Hold Times

All soil and soil vapor samples were transported to the laboratory under chain-of-custody documentation and were analyzed within appropriate hold times.

4.3.2 Laboratory Quality Assurance

The laboratories provided data to estimate precision, accuracy, and bias. The laboratory reports indicated that the method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives for soil, sub-slab, and soil vapor.

4.3.3 Reporting Limits

Reporting Limits (RLs) for soil and soil vapor samples were provided by the laboratory.

The RLs for VOCs in soil ranged from 4.0 to 9,600 µg/kg.

The RLs for TPH ranged from 9.9 to 400 mg/kg.

The RLs for OCPs ranged from 5.0 to 1,000 mg/kg.

The RLs for metals were 0.14 to 5.2 mg/kg. A dilution factor (DF) of 0.83 to 1.1 was applied to the soil samples.

The RLs for VOCs in soil vapor samples ranged from 8.3 to 70 µg/m³.

5.0 Interpretation and Conclusions

5.1 RECs and Potential Release Area(s)

The Converse Phase I ESA identified the following RECs in connection with the Site:

- Agricultural use from as early as 1938 is a REC due to potential residual contamination from agricultural chemical use.
- On-site dairy operations and associated chemicals, manure, and equipment, from as early as 1946 are RECs.

5.2 Conceptual Model Validation/Adequacy of Investigations

It is our opinion that the field and analytical data validated the conceptual model.

5.3 Absence, Presence, Degree, Extent of Target Analytes

Soil:

All reported metals concentrations were less than their respective screening levels for both residential and commercial land use scenarios, or applicable regional background concentrations. All reported values were less than their respective hazardous waste disposal criteria.

Concentrations of TPH in the diesel range were reported in four (4) samples (UST-1-5, UST-1-15, UST-2-10, and UST-2-15). The concentrations in UST-1-15 (4,400 mg/kg) and UST-2-15 (1,200 mg/kg) were at or above the screening levels for residential and for commercial land use of 260 mg/kg and 1,200 mg/kg, respectively.

No VOCs or concentrations of TPH in the gasoline and heavy oil ranges were reported in the soil samples.

Concentrations of three (3) OCPs (dieldrin, DDE, and DDT) were detected at boring locations AST-2, AG-4, and AG-5. All detected concentrations were below their respective screening levels for residential and commercial land uses, and applicable hazardous waste disposal criteria.

Soil Vapor:

A total of 15 VOCs were detected in soil vapor sample AST-1-10, and a total of 12 VOCs were detected in soil vapor sample UST-1-10.

Except for benzene, ethylbenzene, and m,p-xylenes, the maximum concentrations of reported VOCs detected were below their respective screening levels for residential land use.

The presence of benzene, toluene, ethylbenzene, and xylenes (BTEX) are commonly associated with petroleum products, and are likely related to the releases from the diesel tanks.

5.4 Other Concerns

5.4.1 Significant Assumptions

No significant assumptions were made during this assessment.

5.4.2 Limitations and Exceptions

No limitations or exceptions were encountered during this assessment.

5.4.3 Special Terms and Conditions

No special terms or conditions need to be noted in this *Limited Phase II ESA* report.

5.5 Conclusions/Objectives Met

Converse has performed a *Limited Phase II ESA* at the approximate 60-acre Site at the southeast corner of Euclid and Schaefer Avenues in the City of Ontario, in conformance with the scope and limitations of ASTM, E1903-19 and the following objectives:

- Evaluate RECs in connection with the Site that were identified during the prior Converse Phase I ESA.
- Identify if potential target analytes are present at concentrations greater than threshold criteria.

Converse presents the following findings based on the results of this assessment:

- All reported metals concentrations were less than their respective screening levels for both residential and commercial land use scenarios, or applicable regional background concentrations. All reported values were less than their respective hazardous waste disposal criteria.
- TPH in the diesel range was reported in four (4) samples at the former UST location. The concentration in sample UST-1-15 was above the screening level for residential and commercial land use. The concentration in sample UST-2-15 was above the screening level for residential land use, but equal to the screening level for commercial land use. Concentrations of VOCs and TPH in the gasoline and heavy oil ranges were not reported in any of the samples analyzed.
- All detected OCP concentrations were less than their respective screening levels for residential land use, and applicable hazardous waste disposal criteria.
- A total of 15 VOCs were detected in soil vapor sample AST-1-10, and a total of 12 VOCs were detected in soil vapor sample UST-1-10. Except for benzene, ethylbenzene, and xylenes, the maximum concentrations of reported VOCs detected were below their screening levels for both residential and commercial land uses.
 - Benzene and ethylbenzene were detected at concentrations in excess of the respective screening levels for residential land use, and for commercial land use at both the current AST location, and the former UST location.
 - Concentrations of m,p-xylenes were reported in soil vapor sample AST-1-10 3,400 μg/m³, which is more than the residential screening level of 3,300 μg/m³, but less than the commercial screening level of 15,000 μg/m³. The impacts from m, p-xylenes are therefore considered to be relatively minor and limited.

Based on the findings of this assessment Converse concludes the following:

- No impacts were identified associated with former agricultural uses of the Site.
- Both the soil and soil vapor appear to be impacted in the vicinity of the current ATS and former UST used for diesel.
 - The impacts to the soil appear to be relatively limited. Although TPH diesel was reported in excess of the commercial screening level at a depth of 15 feet bgs in boring UST-1, it was not detected in the samples from depths of 10 or 20 feet bgs. In boring UST-2 TPH diesel was only reported in the sample from 15 feet bgs, and the concentration was equal to the commercial screening level.

Concentrations of benzene, ethylbenzene, and xylenes were detected in both soil vapor samples at concentrations in excess of screening levels. The screening levels that these concentrations exceed are based on potential impacts to occupants from vapor intrusion. The current impact to the Site from these concentrations is considered to be minimal based on the lack of occupied structures in the vicinity of the AST and UST areas.

6.0 Recommendations

Based on the findings of this assessment, the Site has been impacted from the diesel storage tanks (former UST and current AST). The impacts to the soil are considered to be relatively minor. The elevated concentrations of BTEX in soil vapor samples are not considered to pose a significant risk due to the lack of occupied structures in the vicinity of where there were detected. No further assessment appears warranted at this time. However, further testing should be conducted if Site uses change and structures are planned to be developed in the vicinity of the AST or former UST.

7.0 Reliance

This report is for the sole benefit and exclusive use of RCCD, Inc. in accordance with the terms and conditions that were presented in the revised proposal dated August 30, 2021, under which these services have been provided. The preparation of this report has been in accordance with generally accepted environmental practices. No other warranty, either express or implied, is made.

This report should not be regarded as a guarantee that no further contamination, beyond that which could be detected within the scope of this assessment, is present at the Site. Converse makes no warranties or guarantees as to the accuracy or completeness of information provided or compiled by others. It is possible that information exists beyond the scope of this assessment. It is not possible to absolutely confirm that no hazardous materials and/or substances exist at the Site. If none are identified as part of a limited scope of work, such a conclusion should not be construed as a guaranteed absence of such materials, but merely the results of the evaluation of the Site at the time of the assessment. Also, events may occur after the Site visit, which may result in contamination of the Site. Additional information, which was not found or available to Converse at the time of report preparation, may result in a modification of the conclusions and recommendations presented.

Any reliance on this report by Third Parties shall be at the Third Party's sole risk. Should RCCD, Inc. wish to identify any additional relying parties not previously identified, a completed Application of Authorization to Use (see following page) must be submitted to Converse Consultants.

8.0 References and Sources of Information

- California State Department of Toxic Substances Control (DTSC) and California Regional Water Quality Control Board (RWQCB), Los Angeles Region, Advisory-Active Soil Gas Investigations, July 2015.
- Converse Consultants, Phase I Environmental Site Assessment Report, 60-Acre Property, Euclid Avenue and Schaefer Avenue, Ontario, California, July 29, 2021.
- Department of Toxic Substances Control (DTSC), Human Health Risk Evaluation (HHRA) Note 3, Table 3, June 2020.
- San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels (ESLs), Generic Tables, 2019.

Figures

Figures

SITE LOCATION MAP

RCCD, Inc.
Approximate 60 Acre Site
Euclid Avenue and Schaefer Avenue
Ontario, California

21-16-121-02

Project No:

Converse Consultants

FIGURE

SAMPLE LOCATION MAP

RCCD, Inc. Approximate 60 Acre Site Euclid Avenue and Schaefer Avenue Ontario, California

Project No:

21-16-121-02

Tables

Tables

Table 1

Summary of Analytical Results - Soil

SBCUSD - San Bernardino High School 1850 North E Street San Bernardino, California

Sample ID	Sample		Metals (mg/kg)							TPH (mg/kg)			OCPs (mg/kg)				VOCs (ug/kg)					
Cumple 15	Date	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	All Other Metals	Gasoline	Diesel	Oil	Dieldrin	4,4'-DDE	4,4'-DDT	All Other OCPs	All VOCs
AST-1-2	9/15/21	3.1	110	0.53	ND	24	8.9	15	5.8	ND	16	44	58.0	ND	ND	ND	ND	NA	NA	NA	NA	ND
AST-1-5	9/15/21	3.3	110	0.53	ND	24	9.6	14	5.8	ND	17	46	53	ND	ND	ND	ND	NA	NA	NA	NA	ND
AST-2-0.5	9/15/21	2.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.015	0.30	ND	ND	NA
AST-2-2	9/15/21	2.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.13	ND	ND	NA
AST-2-5	9/15/21	3.6	110	0.63	ND	27	11	16	7.1	ND	19	50	55	ND	ND	ND	ND	NA	NA	NA	NA	ND
UST-1-5	9/15/21	3.0	89	0.49	ND	22	9.1	14	12.0	ND	15	43	48	ND	ND	16	ND	NA	NA	NA	NA	ND
UST-1-10	9/15/21	6.2	76.0	0.6	ND	22	7.5	18	5.1	ND	15	50	46	ND	ND	ND	ND	NA	NA	NA	NA	ND
UST-1-15	9/15/21	5.4	120	0.58	ND	49	9.8	23.0	7.5	ND	19	72	73	ND	ND	4,400	ND	NA	NA	NA	NA	ND
UST-1-20	9/15/21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
UST-1-25	9/15/21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
UST-2-5	9/15/21	2.6	100	0.51	ND	23	8.5	15	9.1	ND	15	40	61	ND	ND	ND	ND	NA	NA	NA	NA	ND
UST-2-10	9/15/21	7.5	99	ND	ND	20	8.6	18	4.7	ND	16	53	45	ND	ND	73	ND	NA	NA	NA	NA	ND
UST-2-15	9/15/21	4.3	130	0.85	ND	32	17	29	9.3	ND	24	82	76	ND	ND	1,200	ND	NA	NA	NA	NA	ND
AG-1-0.5	9/15/21	1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
AG-1-2	9/15/21	1.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
AG-2-0.5	9/15/21	5.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
AG-2-2	9/15/21	6.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
AG-3-0.5	9/15/21	2.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
AG-3-2	9/15/21	4.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
AG-4-0.5	9/15/21	2.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
AG-4-2	9/15/21	3.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.0059	ND	ND	NA
AG-5-0.5	9/15/21	3.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.058	0.017	ND	NA
AG-5-2	9/15/21	2.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.41	0.031	ND	NA
Screening	Residential	12	15,000	16	71	120,000	23	3,100	80	1.0	820	390	23,000		430	260	12,000	0.034	2.0	1.9		
Levels	Commercial	12	220,000	230	780	1,800,000	350	47,000	320	4.4	11,000	5,800	350,000		2,000	1,200	180,000	0.093	9.3	7.1		
	TTLC	500	10,000	75	100	2,500	8,000	2,500	1,000	20	2,000	2,400	5,000					8	1	1		
Regulatory Thresholds	STLC*	5	100	1	1	5	80	25	5	0.2	20	24	250					0.8	0.1	0.1		
meanous	TCLP*	5	100		1	5			5	0.2												

Hilighting indicates value in excess of screening level mg/kg = Milligrams per Kilogram mg/L = Milligrams per Liter

ND = Not Detected

NA = Not Analyzed

TPH = Total Petroleum Hydrocarbons VOCs = Volatile Organic Compounds

Table 2 Summary of Analytical Results - Soil Vapor

SBCUSD - San Bernardino High School 1850 North E Street San Bernardino, California

Sample Location	Sample Depth (ft bgs)	Sample Date	Acetone	Carbon Disulfide	Methylene Chloride	n-Hexane	Benzene	4-Methyl-2-Pentanone	Toluene	2-Hexanone	Ethylbenzene	m,p-Xylenes	o-Xylene	4-Ethyltoluene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	All Other VOCs
AST-1	10	9/15/2021	110	45	23	610	720	46	4,000	52	800	3,400	850	230	180	630	ND
UST-1	10	9/15/2021	89	ND	20	220	510	23	3,500	ND	580	2,300	570	130	91	300	ND
Maximun	Maximum Concentration (ug/m³)			45	23	610	720	46	4,000	52	800	3,400	850	230	180	630	
Screening Levels		Residential	1,100,000	24,000	33	24,000	3.2	100,000	10,000	1,000	37	3,300	3,300		2,100	2,100	
		Commercial / Industrial	4,500,000	103,000	400	103,000	14	433,000	43,000	4,300	160	15,000	15,000	-	8,700	8,700	

Screening levels based on RWQCB Environmental Screening Levels (ESLs) or DTSC HHRA Screening Levels

Screening levels for soil vapor calculated from DTSC HHRA SLs for ambient air by appling an attenuation factor (AF) of 0.03.

Exceeds Screening Levels

All values in units of micrograms per cubic meter (ug/m³)

ft bgs = feet below ground surface

Application for Authorization to Use

Appendix A

Application for Authorization to Use

TO: **Converse Consultants** 717 South Myrtle Avenue Monrovia, California 91016 Project Title & Date: Project Address: FROM: (Please identify name & address of person/entity applying for permission to use the referenced report.) hereby applies for permission to use Applicant the referenced report in order to: Applicant wishes or needs to use the referenced report because: Applicant also understands and agrees that the referenced document is a copyrighted document and shall remain the sole property of Converse Consultants. Unauthorized use or copying of the report is strictly prohibited without the express written permission of Converse Consultants. Applicant understands and agrees that Converse Consultants may withhold such permission at its sole discretion, or grant such permission upon agreement to Terms and Conditions, such as the payment of a re-use fee, amongst others. Applicant Signature: Applicant Name (print): Title: Date:

Analytical Reports

Appendix B

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 450591

Report Level: II

Report Date: 09/22/2021

Analytical Report *prepared for:*

Mike Van Fleet Converse Consultants 717 S. Myrtle Ave. Monrovia, CA 91016

Location: Artevel Phase II 21-16-121-02

Authorized for release by:

Jim Lin, Service Center Manager

Jim.lin@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105, CDC ELITE Member

Sample Summary

Mike Van Fleet Lab Job #: 450591

Converse Consultants Location: Artevel Phase II 21-16-121-02

717 S. Myrtle Ave.

Date Received: 09/15/21

Monrovia, CA 91016

Sample ID	Lab ID	Collected	Matrix
AST-1-10	450591-001	09/15/21 13:58	Air
UST-1-10	450591-002	09/15/21 14:36	Air

Case Narrative

Converse Consultants 717 S. Myrtle Ave.

Monrovia, CA 91016

Mike Van Fleet

Lab Job Number: 450591

Location: Artevel Phase II 21-16-121-02

Date Received: 09/15/21

This data package contains sample and QC results for two air samples, requested for the above referenced project on 09/15/21. The samples were received intact.

Volatile Organics in Air by MS (EPA TO-15):

No analytical problems were encountered.

Stands Stands 2 Days 2 Days (Let Lister 2 By Lister 5 By Lister 6 By Lister 6 By Lister 7 By Lister 7 By Lister 8 By				A 14	Air Chai	in of Cust	Air Chain of Custody Record	þ	Turn	Turn Around Time (rush by advanced notice only)	me (rus	n by adva	nced not	ice only)
A N A L Y T & C A L Page: 1 of 1 209; 100r;		I			;o,	3	-		tandard:		5 Day:		3 Day:	
	A Z A I		U		L		of	1	Day:		1 Day:		Custom T	AT:
#W/A Groupson; Convert Convert Name: Asked white #W/A #W/A #W/A #W/A #W/A #W/A #W/A #W/A	Barkley, And &	ه او مهدار			D	USTOMEF	INFORM!	ATION			PROJ	ECT INFO	RMATION	7
Factor	N/N#	J. A.		Comp	any:	Cons	,	\approx	<u> </u>	Name:	V	1 maga	Phas	L VI
Type Equipment Information Fax:	#N/A	٨		Repor	t To:	Maga	U Mas	Fleet		Number:	3			2
Type Equipment Information	Special Instructions:	•		Email		mvan		Burth	conta	P(0.#:				
Type Equipment Information C2L - 970 - 1212 Sampled By: Learny	•			Addre	:SS:	2 M	F .I	A.W. TI	-ce	Address:	П		charlu	, Onta
Type Equipment Information Sample By: Leasyrange Sample By:				Phone	äi	-929	۳ ا	ୁଦନ		Global ID:			•	1
Type Equipment Information Size Flow Sample S				Fax:				212		Sampled By:		espar	With	Unides
Type Equipment Information Sample												IV A	nalysis Req	uested V
Type Equipment information Sample												51-1		
Open	7.	Type	Equipme		_		Sai	mpling Inf	ormation			<u> </u>		
15 5V Closto 14 15 15 28 31 572 7 V	Sample ID	(I) Indcor (A) Ambient (SV) Soil Vapor	Canister ID			Sample Start	Sample Start	Vacuum Start	Sample	Sample End	Vacuum End ("He)	- <u>2</u> 26		
10 5	100	(S) Source	01.8			Date	ime		Of (C/S)	o co	4	N S		
Signature Signat	- 1-150		C10343	الحا ال		1/3/2/1	2:36		9/15/21	2:50	- 21	>>		
Signature Signature Signature Print Name Company/Title Date/Time	3													
Signature Signature Print Name Company Title Date / Tim Paris Danis A EA CL Olicial	4													
Signature Signature Print Name Company Title Date/Time Company Title Date/Time A 91/5/21	5													
Signature Signature Print Name Company / Title Date / Time Company / Title Date / Time Company / Title Date / Time	S.													
Signature Signature Signature Print Name Company Title Date/Tim	7									į				
Signature Signature Print Name Company / Title Date / Time	∞				1									
Signature Print Name Company / Title Date / Time March Print Name Company / Title Date / Time Print Name Date / Time Date / Time Date / Time Print Name Date / Time Date / Time Date / Time Print Name Date / Time Date / Time Date / Time Date / Time Print Name Date / Time Da	6													
A Maspar Withinger Corvers Contract 9115121 Tais periude Edel 9115121	OT	Signature	(-	Print Na	ame	-		/ vueumu	Title			ate / Tim	
MINISTER CANIMA EAGL 9/15/21 1	:	Jigilatyle			- 1	Z 2	╁	١	$ \hat{\xi} $	1		0,10	120	777
	Received By:			Zeson Variation	7	44~Q		ブ マ マ		≺∣	5		7 -	1491
² Received By: . ³ Received By: . ³ Received By: .	² Relinquished By:		7)					-			P 1		
³ Relinquished By: ³ Received By:	² Received By:					:								
³ Received By:	³ Relinquished By:													
	³ Received By:													

SAMPLE ACCEPTANCE CHECKLIST

C				
Section 1				
	Project:			
Date Received:9/15/21	Sampler's Name Present:	√ Yes	No	
Section 2				
Sample(s) received in a cooler? Yes, How many?	✓ No (skin section 2)	Sample	Temp (°C) No Cooler)	·Ambie
Sample Temp (°C), One from each cooler: #1:		#4:	No Cooler)	•
(Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptan			for samples	collected
the same day as sample receipt to have a higher temperatu				
Shipping Information:				
Section 3				
Was the cooler packed with: Ice Ice Packs Paper None	Bubble Wrap Styro	foam 		
Cooler Temp (°C): #1:#2:	#3:	_#4:	*	
Section 4		YES	NO	N/A
Was a COC received?		√ √	140	IV/A
Are sample IDs present?		1		
Are sampling dates & times present?		1		
Is a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?		1		
Are custody seals present?			✓	
If custody seals are present, were they intact?				✓
Are all samples sealed in plastic bags? (Recommended fo	r Microbiology samples)			√
Did all samples arrive intact? If no, indicate in Section 4 b	elow.	√		
Did all bottle labels agree with COC? (ID, dates and times)		✓		
Were the samples collected in the correct containers for	the required tests?	✓		
Are the containers labeled with the correct preserva	atives?			✓
Is there headspace in the VOA vials greater than 5-6 mm	in diameter?			✓
Was a sufficient amount of sample submitted for the requ	uested tests?	✓		
Section 5 Explanations/Comments				
Section 5 Explanations/ comments				
Section 6	. 🗖			
For discrepancies, how was the Project Manager notified	PM Initials: Email (email sent to/o			
Project Manager's response:				
. ^				
Completed By:	Date: 9/15/21			
Enthalpy Analytical, a subsidiary of N 931 W. Barkley Ave, Orange, CA 92868 •	• •			

www.enthalpy.com/socal Sample Acceptance Checklist – Rev 4, 8/8/2017

5 of 15

Mike Van Fleet Converse Consultants 717 S. Myrtle Ave. Monrovia, CA 91016

Lab Job #: 450591 Location: Artevel Phase II 21-16-121-02 Date Received: 09/15/21

Sample ID: AST-1-10 Lab ID: 450591-001 Collected: 09/15/21 13:58

Matrix: Air

450591-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15									
Prep Method: METHOD									
Freon 12	ND	ι	ug/m3	20	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Freon 114	ND	ι	ug/m3	28	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Chloromethane	ND	ι	ug/m3	8.3	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Vinyl Chloride	ND	ι	ug/m3	10	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Bromomethane	ND	ι	ug/m3	16	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Chloroethane	ND	ι	ug/m3	11	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Trichlorofluoromethane	ND	ι	ug/m3	22	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,1-Dichloroethene	ND	ι	ug/m3	16	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Freon 113	ND	ι	ug/m3	31	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Acetone	110	ι	ug/m3	48	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Carbon Disulfide	45	ι	ug/m3	12	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Isopropanol (IPA)	ND	ι	ug/m3	49	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Methylene Chloride	23	ι	ug/m3	14	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
trans-1,2-Dichloroethene	ND	ι	ug/m3	16	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
MTBE	ND	ι	ug/m3	14	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
n-Hexane	610	ι	ug/m3	14	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,1-Dichloroethane	ND	ι	ug/m3	16	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Vinyl Acetate	ND	ι	ug/m3	70	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
cis-1,2-Dichloroethene	ND	ι	ug/m3	16	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
2-Butanone	ND	ι	ug/m3	59	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Chloroform	ND	ι	ug/m3	20	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,1,1-Trichloroethane	ND	ι	ug/m3	22	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Carbon Tetrachloride	ND	ι	ug/m3	25	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Benzene	720	ι	ug/m3	13	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,2-Dichloroethane	ND	ι	ug/m3	16	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Trichloroethene	ND	ι	ug/m3	21	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,2-Dichloropropane	ND	ι	ug/m3	18	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Bromodichloromethane	ND	ι	ug/m3	27	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
cis-1,3-Dichloropropene	ND	ι	ug/m3	18	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
4-Methyl-2-Pentanone	46	ι	ug/m3	16	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Toluene	4,000	ι	ug/m3	30	40	274261	09/21/21 18:29	09/21/21 18:29	ZNZ
trans-1,3-Dichloropropene	ND	ι	ug/m3	18	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,1,2-Trichloroethane	ND	ι	ug/m3	22	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Tetrachloroethene	ND	ι	ug/m3	27	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
2-Hexanone	52	ι	ug/m3	41	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ

		_	,						
450591-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Dibromochloromethane	ND		ug/m3	34	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,2-Dibromoethane	ND		ug/m3	31	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Chlorobenzene	ND		ug/m3	18	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Ethylbenzene	800		ug/m3	17	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
m,p-Xylenes	3,400		ug/m3	35	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
o-Xylene	850		ug/m3	17	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Styrene	ND		ug/m3	17	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Bromoform	ND		ug/m3	41	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,1,2,2-Tetrachloroethane	ND		ug/m3	27	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,1,1,2-Tetrachloroethane	ND		ug/m3	27	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
4-Ethyltoluene	230		ug/m3	20	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,3,5-Trimethylbenzene	180		ug/m3	20	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,2,4-Trimethylbenzene	630		ug/m3	20	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,3-Dichlorobenzene	ND		ug/m3	24	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,4-Dichlorobenzene	ND		ug/m3	24	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Benzyl chloride	ND		ug/m3	21	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,2-Dichlorobenzene	ND		ug/m3	24	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
1,2,4-Trichlorobenzene	ND		ug/m3	30	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Hexachlorobutadiene	ND		ug/m3	43	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Xylene (total)	4,300		ug/m3	17	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ
Surrogates				Limits					
Bromofluorobenzene	112%		%REC	60-140	20	274186	09/21/21 00:07	09/21/21 00:07	ZNZ

Sample ID: UST-1-10 Lab ID: 450591-002 Collected: 09/15/21 14:36

Matrix: Air

50591-002 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
ethod: EPA TO-15								
ep Method: METHOD								
Freon 12	ND	ug/m3	20	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Freon 114	ND	ug/m3	28	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Chloromethane	ND	ug/m3	8.3	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Vinyl Chloride	ND	ug/m3	10	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Bromomethane	ND	ug/m3	16	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Chloroethane	ND	ug/m3	11	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Trichlorofluoromethane	ND	ug/m3	22	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,1-Dichloroethene	ND	ug/m3	16	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Freon 113	ND	ug/m3	31	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Acetone	89	ug/m3	48	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Carbon Disulfide	ND	ug/m3	12	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Isopropanol (IPA)	ND	ug/m3	49	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Methylene Chloride	20	ug/m3	14	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
trans-1,2-Dichloroethene	ND	ug/m3	16	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
MTBE	ND	ug/m3	14	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
n-Hexane	220	ug/m3	14	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,1-Dichloroethane	ND	ug/m3	16	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Vinyl Acetate	ND	ug/m3	70	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
cis-1,2-Dichloroethene	ND	ug/m3	16	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
2-Butanone	ND	ug/m3	59	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Chloroform	ND	ug/m3	20	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,1,1-Trichloroethane	ND	ug/m3	22	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Carbon Tetrachloride	ND	ug/m3	25	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Benzene	510	ug/m3	13	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,2-Dichloroethane	ND	ug/m3	16	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Trichloroethene	ND	ug/m3	21	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,2-Dichloropropane	ND	ug/m3	18	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Bromodichloromethane	ND	 ug/m3	27	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
cis-1,3-Dichloropropene	ND	ug/m3	18	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
4-Methyl-2-Pentanone	23	ug/m3	16	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Toluene	3,500	ug/m3	30	40	274261	09/21/21 17:50	09/21/21 17:50	ZNZ
trans-1,3-Dichloropropene	ND	ug/m3	18	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,1,2-Trichloroethane	ND	ug/m3	22	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Tetrachloroethene	ND	ug/m3	27	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
2-Hexanone	ND	ug/m3	41	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Dibromochloromethane	ND	ug/m3	34	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,2-Dibromoethane	ND	ug/m3	31	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Chlorobenzene	ND	ug/m3	18	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Ethylbenzene	580	ug/m3	17	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
	2,300	ug/m3	35	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
m,p-Xylenes	2,300	ug/IIIo	აა	20	214100	03/20/21 23.21	03/20/21 23.21	ZINZ

450591-002 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
o-Xylene	570	ug/m3	17	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Styrene	ND	ug/m3	17	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Bromoform	ND	ug/m3	41	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,1,2,2-Tetrachloroethane	ND	ug/m3	27	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,1,1,2-Tetrachloroethane	ND	ug/m3	27	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
4-Ethyltoluene	130	ug/m3	20	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,3,5-Trimethylbenzene	91	ug/m3	20	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,2,4-Trimethylbenzene	300	ug/m3	20	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,3-Dichlorobenzene	ND	ug/m3	24	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,4-Dichlorobenzene	ND	ug/m3	24	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Benzyl chloride	ND	ug/m3	21	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,2-Dichlorobenzene	ND	ug/m3	24	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
1,2,4-Trichlorobenzene	ND	ug/m3	30	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Hexachlorobutadiene	ND	ug/m3	43	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Xylene (total)	2,900	ug/m3	17	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ
Surrogates	•		Limits		•			•
Bromofluorobenzene	108%	%REC	60-140	20	274186	09/20/21 23:27	09/20/21 23:27	ZNZ

ND Not Detected

Type: Lab Control Sample Lab ID: QC944465 Batch: 274186

Matrix: Air Method: EPA TO-15 Prep Method: METHOD

IVIQUIA. AII	Wictii	ou. LIAI	J-13	1 Tep Meti	ioa. iviL	11100
QC944465 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Freon 12	9.504	10.00	ppbv	95%		70-130
Freon 114	9.793	10.00	ppbv	98%		70-130
Chloromethane	8.638	10.00	ppbv	86%		70-130
Vinyl Chloride	9.711	10.00	ppbv	97%		70-130
Bromomethane	9.711	10.00	ppbv	97%		70-130
Chloroethane	10.05	10.00	ppbv	100%		70-130
Trichlorofluoromethane	9.499	10.00	ppbv	95%		70-130
1,1-Dichloroethene	9.948	10.00	ppbv	99%		70-130
Freon 113	9.947	10.00	ppbv	99%		70-130
Acetone	8.539	10.00	ppbv	85%		70-130
Carbon Disulfide	9.978	10.00	ppbv	100%		70-130
Isopropanol (IPA)	10.28	10.00	ppbv	103%		70-130
Methylene Chloride	8.711	10.00	ppbv	87%		70-130
trans-1,2-Dichloroethene	9.920	10.00	ppbv	99%		70-130
MTBE	11.01	10.00	ppbv	110%		70-130
n-Hexane	10.67	10.00	ppbv	107%		70-130
1,1-Dichloroethane	9.396	10.00	ppbv	94%		70-130
Vinyl Acetate	10.56	10.00	ppbv	106%		70-130
cis-1,2-Dichloroethene	10.21	10.00	ppbv	102%		70-130
2-Butanone	10.94	10.00	ppbv	109%		70-130
Chloroform	9.586	10.00	ppbv	96%		70-130
1,1,1-Trichloroethane	9.932	10.00	ppbv	99%		70-130
Carbon Tetrachloride	9.787	10.00	ppbv	98%		70-130
Benzene	10.32	10.00	ppbv	103%		70-130
1,2-Dichloroethane	9.440	10.00	ppbv	94%		70-130
Trichloroethene	10.09	10.00	ppbv	101%		70-130
1,2-Dichloropropane	9.794	10.00	ppbv	98%		70-130
Bromodichloromethane	9.725	10.00	ppbv	97%		70-130
cis-1,3-Dichloropropene	11.14	10.00	ppbv	111%		70-130
4-Methyl-2-Pentanone	10.89	10.00	ppbv	109%		70-130
trans-1,3-Dichloropropene	11.28	10.00	ppbv	113%		70-130
1,1,2-Trichloroethane	10.16	10.00	ppbv	102%		70-130
Tetrachloroethene	10.10	10.00	ppbv	101%		70-130
2-Hexanone	11.53	10.00	ppbv	115%		70-130
Dibromochloromethane	10.22	10.00	ppbv	102%		70-130
1,2-Dibromoethane	10.48	10.00	ppbv	105%		70-130
Chlorobenzene	10.40	10.00	ppbv	104%		70-130
Ethylbenzene	11.35	10.00	ppbv	113%		70-130
m,p-Xylenes	22.96	20.00	ppbv	115%		70-130
o-Xylene	11.53	10.00	ppbv	115%		70-130
Styrene	12.11	10.00	ppbv	121%		70-130
Bromoform	10.96	10.00	ppbv	110%		70-130

QC944465 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1,2,2-Tetrachloroethane	10.59	10.00	ppbv	106%	70-130
1,1,1,2-Tetrachloroethane	10.15	10.00	ppbv	102%	70-130
4-Ethyltoluene	11.84	10.00	ppbv	118%	70-130
1,3,5-Trimethylbenzene	11.54	10.00	ppbv	115%	70-130
1,2,4-Trimethylbenzene	11.84	10.00	ppbv	118%	70-130
1,3-Dichlorobenzene	10.95	10.00	ppbv	110%	70-130
1,4-Dichlorobenzene	11.02	10.00	ppbv	110%	70-130
Benzyl chloride	12.15	10.00	ppbv	121%	70-130
1,2-Dichlorobenzene	11.07	10.00	ppbv	111%	70-130
1,2,4-Trichlorobenzene	12.18	10.00	ppbv	122%	70-130
Hexachlorobutadiene	10.80	10.00	ppbv	108%	70-130
Surrogates					
Bromofluorobenzene	10.84	10.00	ppbv	108%	60-140

Type: Lab Control Sample Duplicate Lab ID: QC944466 Batch: 274186

Matrix: Air Method: EPA TO-15 Prep Method: METHOD

QC944466 Analyte	Result	Spiked	Units	Recovery Qu	ıal Limits	RPD	RPD Lim
Freon 12	9.317				70-130		
		10.00	ppbv	93%		2	30
Freon 114	9.883	10.00	ppbv	99%	70-130 70-130	1	30
Chloromethane	8.446	10.00	ppbv	84%		2	30
Vinyl Chloride	9.655	10.00	ppbv	97%	70-130	1	30
Bromomethane	9.600	10.00	ppbv	96%	70-130	1	30
Chloroethane	9.841	10.00	ppbv	98%	70-130	2	30
Trichlorofluoromethane	9.455	10.00	ppbv	95%	70-130	0	30
1,1-Dichloroethene	9.851	10.00	ppbv	99%	70-130	1	30
Freon 113	9.923	10.00	ppbv	99%	70-130	0	30
Acetone	8.753	10.00	ppbv	88%	70-130	2	30
Carbon Disulfide	9.899	10.00	ppbv	99%	70-130	1	30
Isopropanol (IPA)	10.28	10.00	ppbv	103%	70-130	0	30
Methylene Chloride	8.708	10.00	ppbv	87%	70-130	0	30
trans-1,2-Dichloroethene	9.895	10.00	ppbv	99%	70-130	0	30
MTBE	11.01	10.00	ppbv	110%	70-130	0	30
n-Hexane	10.52	10.00	ppbv	105%	70-130	1	30
1,1-Dichloroethane	9.310	10.00	ppbv	93%	70-130	1	30
Vinyl Acetate	10.54	10.00	ppbv	105%	70-130	0	30
cis-1,2-Dichloroethene	10.18	10.00	ppbv	102%	70-130	0	30
2-Butanone	10.88	10.00	ppbv	109%	70-130	1	30
Chloroform	9.449	10.00	ppbv	94%	70-130	1	30
1,1,1-Trichloroethane	9.829	10.00	ppbv	98%	70-130	1	30
Carbon Tetrachloride	9.676	10.00	ppbv	97%	70-130	1	30
Benzene	10.29	10.00	ppbv	103%	70-130	0	30
1,2-Dichloroethane	9.415	10.00	ppbv	94%	70-130	0	30
Trichloroethene	10.07	10.00	ppbv	101%	70-130	0	30
1,2-Dichloropropane	9.697	10.00	ppbv	97%	70-130	1	30
Bromodichloromethane	9.647	10.00	ppbv	96%	70-130	1	30
cis-1,3-Dichloropropene	10.91	10.00	ppbv	109%	70-130	2	30
4-Methyl-2-Pentanone	10.82	10.00	ppbv	108%	70-130	1	30
trans-1,3-Dichloropropene	11.08	10.00	ppbv	111%	70-130	2	30
1,1,2-Trichloroethane	9.962	10.00	ppbv	100%	70-130	2	30
Tetrachloroethene	10.06	10.00	ppbv	101%	70-130	0	30
2-Hexanone	11.57	10.00	ppbv	116%	70-130	0	30
Dibromochloromethane	10.23	10.00	ppbv	102%	70-130	0	30
1,2-Dibromoethane	10.56	10.00	ppbv	106%	70-130	1	30
Chlorobenzene	10.35	10.00	ppbv	103%	70-130	1	30
Ethylbenzene	11.29	10.00	ppbv	113%	70-130	0	30
m,p-Xylenes	22.84	20.00	ppbv	114%	70-130	1	30
o-Xylene	11.46	10.00	ppbv	115%	70-130	1	30
Styrene	12.16	10.00	ppbv	122%	70-130	0	30

							RPD
QC944466 Analyte	Result	Spiked	Units	Recovery Qua	al Limits	RPD	Lim
Bromoform	10.82	10.00	ppbv	108%	70-130	1	30
1,1,2,2-Tetrachloroethane	10.47	10.00	ppbv	105%	70-130	1	30
1,1,1,2-Tetrachloroethane	9.942	10.00	ppbv	99%	70-130	2	30
4-Ethyltoluene	11.84	10.00	ppbv	118%	70-130	0	30
1,3,5-Trimethylbenzene	11.47	10.00	ppbv	115%	70-130	1	30
1,2,4-Trimethylbenzene	11.82	10.00	ppbv	118%	70-130	0	30
1,3-Dichlorobenzene	11.05	10.00	ppbv	110%	70-130	1	30
1,4-Dichlorobenzene	11.10	10.00	ppbv	111%	70-130	1	30
Benzyl chloride	12.02	10.00	ppbv	120%	70-130	1	30
1,2-Dichlorobenzene	11.08	10.00	ppbv	111%	70-130	0	30
1,2,4-Trichlorobenzene	12.52	10.00	ppbv	125%	70-130	3	30
Hexachlorobutadiene	10.67	10.00	ppbv	107%	70-130	1	30
Surrogates							
Bromofluorobenzene	10.58	10.00	ppbv	106%	60-140		

Type: Blank Lab ID: QC944467 Batch: 274186

Matrix: Air Method: EPA TO-15 Prep Method: METHOD

QC944467 Analyte	Result	Qual Units	RL	Prepared	Analyzed
Freon 12	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Freon 114	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Chloromethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Vinyl Chloride	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Bromomethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Chloroethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Trichlorofluoromethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,1-Dichloroethene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Freon 113	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Acetone	ND	ppbv	1.0	09/20/21 12:59	09/20/21 12:59
Carbon Disulfide	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Isopropanol (IPA)	ND	ppbv	1.0	09/20/21 12:59	09/20/21 12:59
Methylene Chloride	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
trans-1,2-Dichloroethene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
MTBE	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
n-Hexane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,1-Dichloroethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Vinyl Acetate	ND	ppbv	1.0	09/20/21 12:59	09/20/21 12:59
cis-1,2-Dichloroethene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
2-Butanone	ND	ppbv	1.0	09/20/21 12:59	09/20/21 12:59
Chloroform	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,1,1-Trichloroethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Carbon Tetrachloride	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Benzene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,2-Dichloroethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Trichloroethene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,2-Dichloropropane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Bromodichloromethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
cis-1,3-Dichloropropene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
4-Methyl-2-Pentanone	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
trans-1,3-Dichloropropene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,1,2-Trichloroethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Tetrachloroethene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
2-Hexanone	ND	ppbv	0.50	09/20/21 12:59	09/20/21 12:59
Dibromochloromethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,2-Dibromoethane	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Chlorobenzene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Ethylbenzene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
m,p-Xylenes	ND	ppbv	0.40	09/20/21 12:59	09/20/21 12:59
o-Xylene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Styrene	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Bromoform	ND	ppbv	0.20	09/20/21 12:59	09/20/21 12:59

QC944467 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
1,1,2,2-Tetrachloroethane	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,1,1,2-Tetrachloroethane	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
4-Ethyltoluene	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,3,5-Trimethylbenzene	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,2,4-Trimethylbenzene	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,3-Dichlorobenzene	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,4-Dichlorobenzene	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Benzyl chloride	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,2-Dichlorobenzene	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
1,2,4-Trichlorobenzene	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Hexachlorobutadiene	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Xylene (total)	ND		ppbv	0.20	09/20/21 12:59	09/20/21 12:59
Surrogates				Limits		
Bromofluorobenzene	102%		%REC	60-140	09/20/21 12:59	09/20/21 12:59

Type: Lab Control Sample Lab ID: QC944685 Batch: 274261

Matrix: Air Method: EPA TO-15 Prep Method: METHOD

QC944685 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Toluene	10.93	10.00	ppbv	109%	70-130
Surrogates					
Bromofluorobenzene	10.88	10.00	ppbv	109%	60-140

Type: Lab Control Sample Duplicate Lab ID: QC944686 Batch: 274261

Matrix: Air Method: EPA TO-15 Prep Method: METHOD

								RPD
QC944686 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim
Toluene	10.84	10.00	ppbv	108%		70-130	1	30
Surrogates								
Bromofluorobenzene	11.22	10.00	ppbv	112%		60-140		

Type: Blank Lab ID: QC944687 Batch: 274261

Matrix: Air Method: EPA TO-15 Prep Method: METHOD

QC944687 Analyte	Result Qual	Units	RL	Prepared	Analyzed
Toluene	ND	ppbv	0.20	09/21/21 12:29	09/21/21 12:29
Surrogates			Limits		
Bromofluorobenzene	105%	%REC	60-140	09/21/21 12:29	09/21/21 12:29

ND Not Detected

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 450593

Report Level: II

Report Date: 09/21/2021

Analytical Report prepared for:

Mike Van Fleet Converse Consultants 717 S. Myrtle Ave. Monrovia, CA 91016

Location: Artevel Phase II 21-16-121-02

Authorized for release by:

Jim Lin, Service Center Manager

Jim.lin@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105, CDC ELITE Member

Sample Summary

Mike Van Fleet Lab Job #: 450593

Converse Consultants Location: Artevel Phase II 21-16-121-02

717 S. Myrtle Ave.

Date Received: 09/15/21

Monrovia, CA 91016

Sample ID	Lab ID	Collected	Matrix
AST-1-2	450593-001	09/15/21 08:20	Soil
AST-1-5	450593-002	09/15/21 08:22	Soil
AST-1-10	450593-003	09/15/21 08:23	Soil
AST-1-15	450593-004	09/15/21 08:25	Soil
AST-2-0.5	450593-005	09/15/21 09:10	Soil
AST-2-2	450593-006	09/15/21 09:12	Soil
AST-2-5	450593-007	09/15/21 09:15	Soil

Case Narrative

Converse Consultants 717 S. Myrtle Ave. Monrovia, CA 91016

Mike Van Fleet

Lab Job Number: 450593

Location: Artevel Phase II 21-16-121-02

Date Received: 09/15/21

This data package contains sample and QC results for five soil samples, requested for the above referenced project on 09/15/21. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015M):

High RPD was observed for diesel C10-C28 in the MS/MSD of UST-1-15 (lab # 450596-003); the high RPD was not associated with any reported results. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Pesticides (EPA 8081A):

Low recovery was observed for endrin in the MS of AG-3-0.5 (lab # 450592-005); the LCS was within limits. High RPD was observed for endrin and endrin ketone in the MS/MSD of AG-3-0.5 (lab # 450592-005); these analytes were not detected at or above the RL in the associated samples. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

Low recoveries were observed for antimony in the MS/MSD of AST-1-2 (lab # 450593-001); the associated RPD was within limits. High recovery was observed for barium in the MSD of AST-1-2 (lab # 450593-001). High RPD was also observed for barium in the MS/MSD of AST-1-2 (lab # 450593-001). No other analytical problems were encountered.

	V II II		1	Chain of Custody Record	cord	Turn Around	Turn Around Time (rush by advanced notice only)	anced notice only	
LIVITAL	I L		Lab No:	75059	Standard:	ard:	5 Day:	3 Day:	
			L Page:	Jo , 1	1 2 Day:		1 Day:	Custom TAT:	
<< Select a Laboratory >>> #N/A Roundly Kur Brange	atory >>>	x lorang		Matrix: A = Air S = Soil/Solid W = Water DW = Drinking Wate SD = Sediment PP = Pure Product SEA = Sea Water	A = Air S = Soil/Solid • Drinking Wate SD = Sedimen roduct SEA = Sea Water	1 = Na2S $4 = H2SO$	Preservatives: $1 = Na_2S_2O_3$ $2 = HCl$ $3 = HNO_3$ $4 = H_2SO_4$ $5 = NaOH$ $6 = Other$	Sample Receipt Temp: 3 :r	remp:
#N/A				SW = Swab T = Tissue W	WP = Wipe O = Other			(lab use only)	
CUSTOMER INFORMATION		PRC	JECT INFC	PROJECT INFORMATION	Analy	Analysis Request	Test Ins	Test Instructions / Comments	s
company: Comerx Consultants		Name:	Antene	1 (here !!	₩ h				
REPORT TO: MUDGE Van Flee			21-12		12,				
Email: Nota (12 FOCONUTY CON / 1/2 P.O. #:	Mensylph	.# #:		1	72 (08		_		
Address: 717 5. Marth Ave	3	Odress:	Esclid	Ave & Stadler	(1) (2) (3)) 6			• • • • • • • • • • • • • • • • • • • •
Moweria CA grows	sı 6		Orkani	10, Ch	79 - 797 710	<u> </u>			
Phone: 626-930-1200		Global ID:		٠ .	ශි 2 –	-			
Fax: 626 - 930 -1212		Sampled By:	Ceerran	w Littings	- 27	7			
Sample ID	Sampling Date	Sampling Time	β Matrix	Container No. / Size	71/11-12 17.06 VOC.	200			
1 AST-1-2	9/15/21	८८३ में	0	15 kove/2000	\ \ \ \ \				
2 1-125 2	-			tale					
3 AKT-2-10		9:23					kole		
4 AST-1-15		8:24	à C	>			hold		
5 AST-2-0.5		9:00		1 s/ave	Ś				
6 AST-2-2		21:6		15 beur	5				
2-2-120 1	→	9:18	>	Isleeve (Zencose, V	\$ \$ \$				
8									
0 (*									
	oal +cabi			in+ Namo		Juny / Title		Date / Time	
	signature	,	7	Frint Name	SOUR COURT	Company / mie	+	ווווב / וווווב	ĺ
¹ Relinquished By:	2,	3	(alypar	Withran	Converk	(mysella	53		
¹ Received By:			YAD D.	SADILLA-	BB	164	151/6	21 164)	
² Relinquished By:			`						
² Received By:	:								
³ Relinquished By:									
³ Received By:									

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Converse Consultants	Project:			
Date Received:9/15/21	Sampler's Name Present:	√Yes	⊟No	
	- Francisco - Control			
Section 2	_	Sample	e Temp (°C)	
Sample(s) received in a cooler? $\boxed{\checkmark}$ Yes, How many? $\boxed{1}$	NO (skip section 2)		(No Cooler)	
Sample Temp (°C), One from each cooler: #1: 8.6	#2:#3:	#4:		
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accepto		•		s collected
the same day as sample receipt to have a higher temperat Shipping Information:	ure as long as there is evidence that co	ooung nas pegi	un.j	
Section 3				
Was the cooler packed with: ✓ Ice ☐ Ice Packs		ofoam		
Paper None	Other			
Cooler Temp (°C): #1: 3.2 #2:	#3:	#4:		······································
Section 4		YES	NO	N/A
Was a COC received?		√		
Are sample IDs present?	•	V		
Are sampling dates & times present?		✓		
Is a relinquished signature present?		✓		
Are the tests required clearly indicated on the COC?	1-	✓		
Are custody seals present?	ч., н.,		✓	G
If custody seals are present, were they intact?				✓
Are all samples sealed in plastic bags? (Recommended for		V		4
Did all samples arrive intact? If no, indicate in Section 4 b		√		
Did all bottle labels agree with COC? (ID, dates and times		√		
Were the samples collected in the correct containers for				
Are the containers labeled with the correct preserv		•		
Is there headspace in the VOA vials greater than 5-6 mm	_	 		-
Was a sufficient amount of sample submitted for the req	uestea tests?	✓		
Section 5 Explanations/Comments				
Section 6				
For discrepancies, how was the Project Manager notified	I? Verbal PM Initials:	Date/Time		
	Email (email sent to			
Project Manager's response:	` `	· · · ——		
1				
TYWAII)				
Completed By:	Date: 9152			
Completed by. W WINTY	Date. 1117 /			
V Enthalpy Analytical, a subsidiary of I	· ·			
931 W. Barkley Ave, Orange, CA 92868	• T: (714) 771-6900 • F: (714) 538-120	19		

www.enthalpy.com/socal Sample Acceptance Checklist – Rev 4, 8/8/2017

5 of 27

Mike Van Fleet Converse Consultants 717 S. Myrtle Ave. Monrovia, CA 91016

Lab Job #: 450593 Location: Artevel Phase II 21-16-121-02 Date Received: 09/15/21

Sample ID: AST-1-2 Lab ID: 450593-001 Collected: 09/15/21 08:20

450593-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.97	274063	09/16/21	09/17/21	KLN
Arsenic	3.1	mg/Kg	0.97	0.97	274063	09/16/21	09/17/21	KLN
Barium	110	mg/Kg	0.97	0.97	274063	09/16/21	09/17/21	KLN
Beryllium	0.53	mg/Kg	0.49	0.97	274063	09/16/21	09/17/21	KLN
Cadmium	ND	mg/Kg	0.49	0.97	274063	09/16/21	09/17/21	KLN
Chromium	24	mg/Kg	0.97	0.97	274063	09/16/21	09/17/21	KLN
Cobalt	8.9	mg/Kg	0.49	0.97	274063	09/16/21	09/17/21	KLN
Copper	15	mg/Kg	0.97	0.97	274063	09/16/21	09/17/21	KLN
Lead	5.8	mg/Kg	0.97	0.97	274063	09/16/21	09/17/21	KLN
Molybdenum	ND	mg/Kg	0.97	0.97	274063	09/16/21	09/17/21	KLN
Nickel	16	mg/Kg	0.97	0.97	274063	09/16/21	09/17/21	KLN
Selenium	ND	mg/Kg	2.9	0.97	274063	09/16/21	09/17/21	KLN
Silver	ND	mg/Kg	0.49	0.97	274063	09/16/21	09/17/21	KLN
Thallium	ND	mg/Kg	2.9	0.97	274063	09/16/21	09/17/21	KLN
Vanadium	44	mg/Kg	0.97	0.97	274063	09/16/21	09/17/21	KLN
Zinc	58	mg/Kg	4.9	0.97	274063	09/16/21	09/17/21	KLN
Method: EPA 7471A								
Method: EPA 7471A Prep Method: METHOD								
	ND	mg/Kg	0.14	1	274112	09/16/21	09/17/21	TNN
Prep Method: METHOD	ND	mg/Kg	0.14	1	274112	09/16/21	09/17/21	TNN
Prep Method: METHOD Mercury	ND	mg/Kg	0.14	1	274112	09/16/21	09/17/21	TNN
Prep Method: METHOD Mercury Method: EPA 8015M	ND ND	mg/Kg	0.14	1	274112	09/16/21	09/17/21	TNN
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580								
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10	ND	mg/Kg	10	1	274073	09/16/21	09/17/21	MES
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10 DRO C10-C28	ND ND	mg/Kg mg/Kg	10 10	1 1	274073 274073	09/16/21 09/16/21	09/17/21 09/17/21	MES MES
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10 DRO C10-C28 ORO C28-C44	ND ND	mg/Kg mg/Kg	10 10 20	1 1	274073 274073	09/16/21 09/16/21	09/17/21 09/17/21	MES MES
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10 DRO C10-C28 ORO C28-C44 Surrogates	ND ND ND	mg/Kg mg/Kg mg/Kg	10 10 20 Limits	1 1 1	274073 274073 274073	09/16/21 09/16/21 09/16/21	09/17/21 09/17/21 09/17/21	MES MES MES
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10 DRO C10-C28 ORO C28-C44 Surrogates n-Triacontane	ND ND ND	mg/Kg mg/Kg mg/Kg	10 10 20 Limits	1 1 1	274073 274073 274073	09/16/21 09/16/21 09/16/21	09/17/21 09/17/21 09/17/21	MES MES MES
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10 DRO C10-C28 ORO C28-C44 Surrogates n-Triacontane Method: EPA 8260B	ND ND ND	mg/Kg mg/Kg mg/Kg	10 10 20 Limits	1 1 1	274073 274073 274073	09/16/21 09/16/21 09/16/21	09/17/21 09/17/21 09/17/21	MES MES MES
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10 DRO C10-C28 ORO C28-C44 Surrogates n-Triacontane Method: EPA 8260B Prep Method: EPA 5035	ND ND ND	mg/Kg mg/Kg mg/Kg	10 10 20 Limits 70-130	1 1 1	274073 274073 274073 274073	09/16/21 09/16/21 09/16/21 09/16/21	09/17/21 09/17/21 09/17/21 09/17/21	MES MES MES
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10 DRO C10-C28 ORO C28-C44 Surrogates n-Triacontane Method: EPA 8260B Prep Method: EPA 5035 3-Chloropropene	ND ND ND 93%	mg/Kg mg/Kg mg/Kg	10 10 20 Limits 70-130	1 1 1 1 0.79	274073 274073 274073 274073	09/16/21 09/16/21 09/16/21 09/16/21	09/17/21 09/17/21 09/17/21 09/17/21	MES MES MES RAO
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10 DRO C10-C28 ORO C28-C44 Surrogates n-Triacontane Method: EPA 8260B Prep Method: EPA 5035 3-Chloropropene cis-1,4-Dichloro-2-butene	ND ND ND 93%	mg/Kg mg/Kg mg/Kg %REC ug/Kg	10 10 20 Limits 70-130	1 1 1 1 0.79 0.79	274073 274073 274073 274073 274076 274076	09/16/21 09/16/21 09/16/21 09/16/21 09/17/21 09/17/21	09/17/21 09/17/21 09/17/21 09/17/21 09/17/21 09/17/21	MES MES MES MES
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10 DRO C10-C28 ORO C28-C44 Surrogates n-Triacontane Method: EPA 8260B Prep Method: EPA 5035 3-Chloropropene cis-1,4-Dichloro-2-butene trans-1,4-Dichloro-2-butene	ND ND ND 93% ND ND	mg/Kg mg/Kg mg/Kg %REC ug/Kg ug/Kg	10 20 Limits 70-130 4.0 4.0	1 1 1 1 0.79 0.79 0.79	274073 274073 274073 274073 274076 274076 274076	09/16/21 09/16/21 09/16/21 09/16/21 09/17/21 09/17/21 09/17/21	09/17/21 09/17/21 09/17/21 09/17/21 09/17/21 09/17/21	MES MES MES RAO RAO
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580 GRO C6-C10 DRO C10-C28 ORO C28-C44 Surrogates n-Triacontane Method: EPA 8260B Prep Method: EPA 5035 3-Chloropropene cis-1,4-Dichloro-2-butene trans-1,4-Dichloro-2-butene Freon 12	ND ND ND 93% ND ND ND	mg/Kg mg/Kg mg/Kg %REC ug/Kg ug/Kg ug/Kg ug/Kg	10 20 Limits 70-130 4.0 4.0 4.0	1 1 1 0.79 0.79 0.79	274073 274073 274073 274073 274076 274076 274076 274076	09/16/21 09/16/21 09/16/21 09/16/21 09/17/21 09/17/21 09/17/21 09/17/21	09/17/21 09/17/21 09/17/21 09/17/21 09/17/21 09/17/21 09/17/21	MES MES MES RAO RAO RAO

	A110	ary 313 mesuns	101	730	333			
450593-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Chloroethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Trichlorofluoromethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Acetone	ND	ug/Kg	79	0.79	274076	09/17/21	09/17/21	RAO
Freon 113	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Methylene Chloride	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
MTBE	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
trans-1,2-Dichloroethene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
2-Butanone	ND	ug/Kg	79	0.79	274076	09/17/21	09/17/21	RAO
cis-1,2-Dichloroethene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
2,2-Dichloropropane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Chloroform	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Bromochloromethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,1,1-Trichloroethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,1-Dichloropropene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Carbon Tetrachloride	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Benzene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Trichloroethene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,2-Dichloropropane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Bromodichloromethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Dibromomethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
4-Methyl-2-Pentanone	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
cis-1,3-Dichloropropene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Toluene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
trans-1,3-Dichloropropene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,1,2-Trichloroethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,3-Dichloropropane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Tetrachloroethene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Dibromochloromethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,2-Dibromoethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Chlorobenzene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Ethylbenzene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
m,p-Xylenes	ND	ug/Kg	7.9	0.79	274076	09/17/21	09/17/21	RAO
o-Xylene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Styrene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Bromoform	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Isopropylbenzene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,1,2,2-Tetrachloroethane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,2,3-Trichloropropane	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Propylbenzene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Bromobenzene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,3,5-Trimethylbenzene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
2-Chlorotoluene	ND	ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO

AEDEDO DOS Amelista	Dooult	Ougl	Units	RL	DF	Dotob	Dranarad	Analyzad	Chemist
450593-001 Analyte	Result	Qual				Batch	Prepared	Analyzed	
4-Chlorotoluene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
tert-Butylbenzene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,2,4-Trimethylbenzene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
sec-Butylbenzene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
para-Isopropyl Toluene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,3-Dichlorobenzene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,4-Dichlorobenzene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
n-Butylbenzene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,2-Dichlorobenzene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,2,4-Trichlorobenzene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Hexachlorobutadiene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Naphthalene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
1,2,3-Trichlorobenzene	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Xylene (total)	ND		ug/Kg	4.0	0.79	274076	09/17/21	09/17/21	RAO
Surrogates				Limits					
Dibromofluoromethane	102%		%REC	70-145	0.79	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane-d4	104%		%REC	70-145	0.79	274076	09/17/21	09/17/21	RAO
Toluene-d8	100%		%REC	70-145	0.79	274076	09/17/21	09/17/21	RAO
Bromofluorobenzene	96%		%REC	70-145	0.79	274076	09/17/21	09/17/21	RAO

Sample ID: AST-1-5 Lab ID: 450593-002 Collected: 09/15/21 08:22

450593-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	2.5	0.83	274063	09/16/21	09/17/21	KLN
Arsenic	3.3		mg/Kg	0.83	0.83	274063	09/16/21	09/17/21	KLN
Barium	110		mg/Kg	0.83	0.83	274063	09/16/21	09/17/21	KLN
Beryllium	0.53		mg/Kg	0.42	0.83	274063	09/16/21	09/17/21	KLN
Cadmium	ND		mg/Kg	0.42	0.83	274063	09/16/21	09/17/21	KLN
Chromium	24		mg/Kg	0.83	0.83	274063	09/16/21	09/17/21	KLN
Cobalt	9.6		mg/Kg	0.42	0.83	274063	09/16/21	09/17/21	KLN
Copper	14		mg/Kg	0.83	0.83	274063	09/16/21	09/17/21	KLN
Lead	5.8		mg/Kg	0.83	0.83	274063	09/16/21	09/17/21	KLN
Molybdenum	ND		mg/Kg	0.83	0.83	274063	09/16/21	09/17/21	KLN
Nickel	17		mg/Kg	0.83	0.83	274063	09/16/21	09/17/21	KLN
Selenium	ND		mg/Kg	2.5	0.83	274063	09/16/21	09/17/21	KLN
Silver	ND		mg/Kg	0.42	0.83	274063	09/16/21	09/17/21	KLN
Thallium	ND		mg/Kg	2.5	0.83	274063	09/16/21	09/17/21	KLN
Vanadium	46		mg/Kg	0.83	0.83	274063	09/16/21	09/17/21	KLN
Zinc	53		mg/Kg	4.2	0.83	274063	09/16/21	09/17/21	KLN
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND		mg/Kg	0.16	1.1	274112	09/16/21	09/17/21	TNN
Method: EPA 8015M Prep Method: EPA 3580									
GRO C6-C10	ND		mg/Kg	10	1	274073	09/16/21	09/17/21	MES
DRO C10-C28	ND		mg/Kg	10	1	274073	09/16/21	09/17/21	MES
ORO C28-C44	ND		mg/Kg	20	1	274073	09/16/21	09/17/21	MES
Surrogates				Limits					
n-Triacontane	99%		%REC	70-130	1	274073	09/16/21	09/17/21	MES
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
cis-1,4-Dichloro-2-butene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
trans-1,4-Dichloro-2-butene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Freon 12	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Chloromethane	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Vinyl Chloride	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Bromomethane	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Chloroethane	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Trichlorofluoromethane	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Acetone	ND		ug/Kg	83	0.83	274076	09/17/21	09/17/21	RAO
Freon 113	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
,	·-		5 5				•	•	

	711	ary sis riesuris	101	730	333			
450593-002 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methylene Chloride	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
MTBE	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
trans-1,2-Dichloroethene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
2-Butanone	ND	ug/Kg	83	0.83	274076	09/17/21	09/17/21	RAO
cis-1,2-Dichloroethene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
2,2-Dichloropropane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Chloroform	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Bromochloromethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,1,1-Trichloroethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,1-Dichloropropene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Carbon Tetrachloride	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Benzene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Trichloroethene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,2-Dichloropropane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Bromodichloromethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Dibromomethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
4-Methyl-2-Pentanone	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
cis-1,3-Dichloropropene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Toluene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
trans-1,3-Dichloropropene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,1,2-Trichloroethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,3-Dichloropropane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Tetrachloroethene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Dibromochloromethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,2-Dibromoethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Chlorobenzene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Ethylbenzene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
m,p-Xylenes	ND	ug/Kg	8.3	0.83	274076	09/17/21	09/17/21	RAO
o-Xylene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Styrene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Bromoform	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Isopropylbenzene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,1,2,2-Tetrachloroethane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,2,3-Trichloropropane	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Propylbenzene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Bromobenzene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,3,5-Trimethylbenzene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
2-Chlorotoluene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
4-Chlorotoluene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
tert-Butylbenzene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,2,4-Trimethylbenzene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
sec-Butylbenzene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
para-Isopropyl Toluene	ND	ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Para Isopropyr roldelle	110	49/119	1.2	0.00	27 1070	00,17/21	00/11/21	1.7.0

450593-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
1,3-Dichlorobenzene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,4-Dichlorobenzene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
n-Butylbenzene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,2-Dichlorobenzene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,2,4-Trichlorobenzene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Hexachlorobutadiene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Naphthalene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
1,2,3-Trichlorobenzene	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Xylene (total)	ND		ug/Kg	4.2	0.83	274076	09/17/21	09/17/21	RAO
Surrogates				Limits					
Dibromofluoromethane	100%		%REC	70-145	0.83	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane-d4	106%		%REC	70-145	0.83	274076	09/17/21	09/17/21	RAO
Toluene-d8	99%		%REC	70-145	0.83	274076	09/17/21	09/17/21	RAO
Bromofluorobenzene	97%		%REC	70-145	0.83	274076	09/17/21	09/17/21	RAO

Sample ID: AST-2-0.5 Lab ID: 450593-005 Collected: 09/15/21 09:10

450593-005 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	2.4	mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
beta-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
delta-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Aldrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Dieldrin	15	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDE	300	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDT	ND	ug/Kg	5.0	1	274027	09/16/21	09/17/21	TRN
Methoxychlor	ND	ug/Kg	10	1	274027	09/16/21	09/16/21	MTS
Toxaphene	ND	ug/Kg	100	1	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND	ug/Kg	50	1	274027	09/16/21	09/16/21	MTS
Surrogates			Limits					
TCMX	65%	%REC	23-120	1	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl	64%	%REC	24-120	1	274027	09/16/21	09/16/21	MTS

Sample ID: AST-2-2 Lab ID: 450593-006 Collected: 09/15/21 09:12

450593-006 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	2.2	mg/Kg	0.99	0.99	274063	09/16/21	09/17/21	KLN
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
beta-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
delta-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Aldrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Dieldrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDE	130	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDT	ND	ug/Kg	5.0	1	274027	09/16/21	09/17/21	TRN
Methoxychlor	ND	ug/Kg	10	1	274027	09/16/21	09/16/21	MTS
Toxaphene	ND	ug/Kg	100	1	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND	ug/Kg	50	1	274027	09/16/21	09/16/21	MTS
Surrogates			Limits					
TCMX	62%	%REC	23-120	1	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl	71%	%REC	24-120	1	274027	09/16/21	09/16/21	MTS

Sample ID: AST-2-5 Lab ID: 450593-007 Collected: 09/15/21 09:15

450593-007 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	3.1	1	274063	09/16/21	09/17/21	KLN
Arsenic	3.6		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Barium	110		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Beryllium	0.63		mg/Kg	0.51	1	274063	09/16/21	09/17/21	KLN
Cadmium	ND		mg/Kg	0.51	1	274063	09/16/21	09/17/21	KLN
Chromium	27		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Cobalt	11		mg/Kg	0.51	1	274063	09/16/21	09/17/21	KLN
Copper	16		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Lead	7.1		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Molybdenum	ND		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Nickel	19		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Selenium	ND		mg/Kg	3.1	1	274063	09/16/21	09/17/21	KLN
Silver	ND		mg/Kg	0.51	1	274063	09/16/21	09/17/21	KLN
Thallium	ND		mg/Kg	3.1	1	274063	09/16/21	09/17/21	KLN
Vanadium	50		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Zinc	55		mg/Kg	5.1	1	274063	09/16/21	09/17/21	KLN
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND		mg/Kg	0.15	1.1	274112	09/16/21	09/17/21	TNN
Method: EPA 8015M Prep Method: EPA 3580									
GRO C6-C10	ND		mg/Kg	10	1	274073	09/16/21	09/17/21	MES
DRO C10-C28	ND		mg/Kg	10	1	274073	09/16/21	09/17/21	MES
ORO C28-C44	ND		mg/Kg	20	1	274073	09/16/21	09/17/21	MES
Surrogates				Limits					
n-Triacontane	96%		%REC	70-130	1	274073	09/16/21	09/17/21	MES
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
cis-1,4-Dichloro-2-butene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
trans-1,4-Dichloro-2-butene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Freon 12	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Chloromethane	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Vinyl Chloride	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Bromomethane	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Chloroethane	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Trichlorofluoromethane	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Acetone	ND		ug/Kg	81	0.81	274076	09/17/21	09/17/21	RAO
Freon 113	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
,			J - 3				. /=-	. /=-	

	Alle	aiyəiə nesu	1113 101	430	J J J J			
450593-007 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methylene Chloride	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
MTBE	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
trans-1,2-Dichloroethene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
2-Butanone	ND	ug/Kg	81	0.81	274076	09/17/21	09/17/21	RAO
cis-1,2-Dichloroethene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
2,2-Dichloropropane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Chloroform	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Bromochloromethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,1,1-Trichloroethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,1-Dichloropropene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Carbon Tetrachloride	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Benzene	ND		4.0	0.81	274076	09/17/21	09/17/21	RAO
		ug/Kg						
Trichloroethene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,2-Dichloropropane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Bromodichloromethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Dibromomethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
4-Methyl-2-Pentanone	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
cis-1,3-Dichloropropene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Toluene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
trans-1,3-Dichloropropene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,1,2-Trichloroethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,3-Dichloropropane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Tetrachloroethene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Dibromochloromethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,2-Dibromoethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Chlorobenzene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Ethylbenzene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
m,p-Xylenes	ND	ug/Kg	8.1	0.81	274076	09/17/21	09/17/21	RAO
o-Xylene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Styrene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Bromoform	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Isopropylbenzene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,1,2,2-Tetrachloroethane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,2,3-Trichloropropane	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Propylbenzene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Bromobenzene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,3,5-Trimethylbenzene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
2-Chlorotoluene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
4-Chlorotoluene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
tert-Butylbenzene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,2,4-Trimethylbenzene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
sec-Butylbenzene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
para-Isopropyl Toluene	ND	ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Para loopropyr roldelle	.10	ug/itg	7.0	J.J I	_, 1070	55/11/L1	55/11/L1	117.00

450593-007 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
1,3-Dichlorobenzene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,4-Dichlorobenzene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
n-Butylbenzene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,2-Dichlorobenzene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,2,4-Trichlorobenzene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Hexachlorobutadiene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Naphthalene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
1,2,3-Trichlorobenzene	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Xylene (total)	ND		ug/Kg	4.0	0.81	274076	09/17/21	09/17/21	RAO
Surrogates				Limits					
Dibromofluoromethane	105%		%REC	70-145	0.81	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane-d4	109%		%REC	70-145	0.81	274076	09/17/21	09/17/21	RAO
Toluene-d8	100%		%REC	70-145	0.81	274076	09/17/21	09/17/21	RAO
Bromofluorobenzene	94%		%REC	70-145	0.81	274076	09/17/21	09/17/21	RAO

ND Not Detected

Type: Blank Lab ID: QC944004 Batch: 274027

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC944004 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.0	09/16/21	09/16/21
beta-BHC	ND	ug/Kg	5.0	09/16/21	09/16/21
gamma-BHC	ND	ug/Kg	5.0	09/16/21	09/16/21
delta-BHC	ND	ug/Kg	5.0	09/16/21	09/16/21
Heptachlor	ND	ug/Kg	5.0	09/16/21	09/16/21
Aldrin	ND	ug/Kg	5.0	09/16/21	09/16/21
Heptachlor epoxide	ND	ug/Kg	5.0	09/16/21	09/16/21
Endosulfan I	ND	ug/Kg	5.0	09/16/21	09/16/21
Dieldrin	ND	ug/Kg	5.0	09/16/21	09/16/21
4,4'-DDE	ND	ug/Kg	5.0	09/16/21	09/16/21
Endrin	ND	ug/Kg	5.0	09/16/21	09/16/21
Endosulfan II	ND	ug/Kg	5.0	09/16/21	09/16/21
Endosulfan sulfate	ND	ug/Kg	5.0	09/16/21	09/16/21
4,4'-DDD	ND	ug/Kg	5.0	09/16/21	09/16/21
Endrin aldehyde	ND	ug/Kg	5.0	09/16/21	09/16/21
Endrin ketone	ND	ug/Kg	5.0	09/16/21	09/16/21
4,4'-DDT	ND	ug/Kg	5.0	09/16/21	09/16/21
Methoxychlor	ND	ug/Kg	10	09/16/21	09/16/21
Toxaphene	ND	ug/Kg	100	09/16/21	09/16/21
Chlordane (Technical)	ND	ug/Kg	50	09/16/21	09/16/21
Surrogates			Limits		
TCMX	62%	%REC	23-120	09/16/21	09/16/21
Decachlorobiphenyl	67%	%REC	24-120	09/16/21	09/16/21

Type: Lab Control Sample Lab ID: QC944005 Batch: 274027

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC944005 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
alpha-BHC	37.23	50.00	ug/Kg	74%		22-129
beta-BHC	39.00	50.00	ug/Kg	78%		28-125
gamma-BHC	36.70	50.00	ug/Kg	73%		22-128
delta-BHC	36.51	50.00	ug/Kg	73%		24-131
Heptachlor	36.86	50.00	ug/Kg	74%		18-124
Aldrin	33.63	50.00	ug/Kg	67%		23-120
Heptachlor epoxide	33.48	50.00	ug/Kg	67%		26-120
Endosulfan I	36.74	50.00	ug/Kg	73%		25-126
Dieldrin	35.97	50.00	ug/Kg	72%		23-124
4,4'-DDE	33.78	50.00	ug/Kg	68%		28-121
Endrin	25.71	50.00	ug/Kg	51%	#	25-127
Endosulfan II	36.31	50.00	ug/Kg	73%		29-121
Endosulfan sulfate	40.07	50.00	ug/Kg	80%		30-121
4,4'-DDD	33.64	50.00	ug/Kg	67%		26-120
Endrin aldehyde	29.12	50.00	ug/Kg	58%		10-120
Endrin ketone	39.94	50.00	ug/Kg	80%		28-125
4,4'-DDT	36.01	50.00	ug/Kg	72%	#	22-125
Methoxychlor	34.43	50.00	ug/Kg	69%	#	28-130
Surrogates						
TCMX	35.21	50.00	ug/Kg	70%		23-120
Decachlorobiphenyl	35.35	50.00	ug/Kg	71%		24-120

Type: Matrix Spike Lab ID: QC944006 Batch: 274027

Matrix (Source ID): Soil (450592-005) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC944006 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	34.95	ND	50.00	ug/Kg	70%		46-120	1
beta-BHC	33.04	ND	50.00	ug/Kg	66%		41-120	1
gamma-BHC	33.32	ND	50.00	ug/Kg	67%		41-120	1
delta-BHC	31.60	ND	50.00	ug/Kg	63%		38-123	1
Heptachlor	32.74	ND	50.00	ug/Kg	65%		39-120	1
Aldrin	29.77	ND	50.00	ug/Kg	60%		34-120	1
Heptachlor epoxide	30.02	ND	50.00	ug/Kg	60%		43-120	1
Endosulfan I	32.36	ND	50.00	ug/Kg	65%		45-120	1
Dieldrin	29.23	ND	50.00	ug/Kg	58%		45-120	1
4,4'-DDE	32.42	ND	50.00	ug/Kg	65%		34-120	1
Endrin	3.058	ND	50.00	ug/Kg	6%	#,*	40-120	1
Endosulfan II	29.55	ND	50.00	ug/Kg	59%		41-120	1
Endosulfan sulfate	31.21	ND	50.00	ug/Kg	62%		42-120	1
4,4'-DDD	30.53	ND	50.00	ug/Kg	61%		41-120	1
Endrin aldehyde	26.39	ND	50.00	ug/Kg	53%		30-120	1
Endrin ketone	46.56	ND	50.00	ug/Kg	93%		45-120	1
4,4'-DDT	32.47	ND	50.00	ug/Kg	65%	#	35-127	1
Methoxychlor	27.74	ND	50.00	ug/Kg	55%	#	42-136	1
Surrogates								
TCMX	28.56		50.00	ug/Kg	57%		23-120	1
Decachlorobiphenyl	28.43		50.00	ug/Kg	57%		24-120	1

Type: Matrix Spike Duplicate Lab ID: QC944007 Batch: 274027

Matrix (Source ID): Soil (450592-005) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample							RPD	
QC944007 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	38.11	ND	50.00	ug/Kg	76%		46-120	9	30	1
beta-BHC	37.25	ND	50.00	ug/Kg	74%		41-120	12	30	1
gamma-BHC	36.98	ND	50.00	ug/Kg	74%		41-120	10	30	1
delta-BHC	36.13	ND	50.00	ug/Kg	72%		38-123	13	30	1
Heptachlor	35.34	ND	50.00	ug/Kg	71%		39-120	8	30	1
Aldrin	33.17	ND	50.00	ug/Kg	66%		34-120	11	30	1
Heptachlor epoxide	32.58	ND	50.00	ug/Kg	65%		43-120	8	30	1
Endosulfan I	35.81	ND	50.00	ug/Kg	72%		45-120	10	30	1
Dieldrin	35.03	ND	50.00	ug/Kg	70%		45-120	18	30	1
4,4'-DDE	35.02	ND	50.00	ug/Kg	70%		34-120	8	30	1
Endrin	34.84	ND	50.00	ug/Kg	70%	#	40-120	168*	30	1
Endosulfan II	34.18	ND	50.00	ug/Kg	68%		41-120	15	30	1
Endosulfan sulfate	34.25	ND	50.00	ug/Kg	68%		42-120	9	30	1
4,4'-DDD	31.84	ND	50.00	ug/Kg	64%		41-120	4	30	1
Endrin aldehyde	25.33	ND	50.00	ug/Kg	51%		30-120	4	30	1
Endrin ketone	33.74	ND	50.00	ug/Kg	67%		45-120	32*	30	1
4,4'-DDT	35.79	ND	50.00	ug/Kg	72%	#	35-127	10	30	1
Methoxychlor	30.01	ND	50.00	ug/Kg	60%	#	42-136	8	30	1
Surrogates										
TCMX	34.22		50.00	ug/Kg	68%		23-120			1
Decachlorobiphenyl	31.45		50.00	ug/Kg	63%		24-120			1

Type: Blank Lab ID: QC944086 Batch: 274063

Matrix: Miscell. Method: EPA 6010B Prep Method: EPA 3050B

QC944086 Analyte	Result	Qual Units	RL	Prepared	Analyzed
Antimony	ND	mg/Kg	3.0	09/16/21	09/21/21
Arsenic	ND	mg/Kg	1.0	09/16/21	09/21/21
Barium	ND	mg/Kg	1.0	09/16/21	09/21/21
Beryllium	ND	mg/Kg	0.50	09/16/21	09/21/21
Cadmium	ND	mg/Kg	0.50	09/16/21	09/21/21
Chromium	ND	mg/Kg	1.0	09/16/21	09/21/21
Cobalt	ND	mg/Kg	0.50	09/16/21	09/21/21
Copper	ND	mg/Kg	1.0	09/16/21	09/21/21
Lead	ND	mg/Kg	1.0	09/16/21	09/21/21
Molybdenum	ND	mg/Kg	1.0	09/16/21	09/21/21
Nickel	ND	mg/Kg	1.0	09/16/21	09/21/21
Selenium	ND	mg/Kg	3.0	09/16/21	09/21/21
Silver	ND	mg/Kg	0.50	09/16/21	09/21/21
Thallium	ND	mg/Kg	3.0	09/16/21	09/21/21
Vanadium	ND	mg/Kg	1.0	09/16/21	09/21/21
Zinc	ND	mg/Kg	5.0	09/16/21	09/21/21

Type: Lab Control Sample Lab ID: QC944087 Batch: 274063

Matrix: Miscell. Method: EPA 6010B Prep Method: EPA 3050B

QC944087 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	99.42	100.0	mg/Kg	99%	80-120
Arsenic	95.38	100.0	mg/Kg	95%	80-120
Barium	98.08	100.0	mg/Kg	98%	80-120
Beryllium	95.11	100.0	mg/Kg	95%	80-120
Cadmium	93.59	100.0	mg/Kg	94%	80-120
Chromium	92.80	100.0	mg/Kg	93%	80-120
Cobalt	97.89	100.0	mg/Kg	98%	80-120
Copper	91.81	100.0	mg/Kg	92%	80-120
Lead	97.63	100.0	mg/Kg	98%	80-120
Molybdenum	98.79	100.0	mg/Kg	99%	80-120
Nickel	97.99	100.0	mg/Kg	98%	80-120
Selenium	83.92	100.0	mg/Kg	84%	80-120
Silver	43.59	50.00	mg/Kg	87%	80-120
Thallium	101.4	100.0	mg/Kg	101%	80-120
Vanadium	96.03	100.0	mg/Kg	96%	80-120
Zinc	101.4	100.0	mg/Kg	101%	80-120

Type: Matrix Spike Lab ID: QC944088 Batch: 274063

Matrix (Source ID): Soil (450593-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC944088 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	37.32	ND	92.59	mg/Kg	40%	*	75-125	0.93
Arsenic	101.3	3.112	92.59	mg/Kg	106%		75-125	0.93
Barium	188.1	113.2	92.59	mg/Kg	81%		75-125	0.93
Beryllium	93.54	0.5298	92.59	mg/Kg	100%		75-125	0.93
Cadmium	95.24	ND	92.59	mg/Kg	103%		75-125	0.93
Chromium	113.9	24.22	92.59	mg/Kg	97%		75-125	0.93
Cobalt	100.1	8.946	92.59	mg/Kg	98%		75-125	0.93
Copper	107.6	14.54	92.59	mg/Kg	101%		75-125	0.93
Lead	93.85	5.844	92.59	mg/Kg	95%		75-125	0.93
Molybdenum	95.07	ND	92.59	mg/Kg	103%		75-125	0.93
Nickel	106.4	16.09	92.59	mg/Kg	98%		75-125	0.93
Selenium	86.02	ND	92.59	mg/Kg	93%		75-125	0.93
Silver	44.05	ND	46.30	mg/Kg	95%		75-125	0.93
Thallium	91.35	ND	92.59	mg/Kg	99%		75-125	0.93
Vanadium	140.0	43.86	92.59	mg/Kg	104%		75-125	0.93
Zinc	135.6	57.91	92.59	mg/Kg	84%		75-125	0.93

Type: Matrix Spike Duplicate Lab ID: QC944089 Batch: 274063

Matrix (Source ID): Soil (450593-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source							RPD	
QC944089 Analyte	Result	Sample Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	38.85	ND	99.01	mg/Kg	39%	*	75-125	3	41	0.99
Arsenic	106.4	3.112	99.01	mg/Kg	104%		75-125	2	35	0.99
Barium	288.6	113.2	99.01	mg/Kg	177%	*	75-125	39*	20	0.99
Beryllium	98.87	0.5298	99.01	mg/Kg	99%		75-125	1	20	0.99
Cadmium	99.34	ND	99.01	mg/Kg	100%		75-125	2	20	0.99
Chromium	120.7	24.22	99.01	mg/Kg	97%		75-125	0	20	0.99
Cobalt	105.4	8.946	99.01	mg/Kg	97%		75-125	1	20	0.99
Copper	113.6	14.54	99.01	mg/Kg	100%		75-125	0	20	0.99
Lead	98.98	5.844	99.01	mg/Kg	94%		75-125	1	20	0.99
Molybdenum	99.19	ND	99.01	mg/Kg	100%		75-125	2	20	0.99
Nickel	112.2	16.09	99.01	mg/Kg	97%		75-125	0	20	0.99
Selenium	89.81	ND	99.01	mg/Kg	91%		75-125	2	20	0.99
Silver	46.13	ND	49.50	mg/Kg	93%		75-125	2	20	0.99
Thallium	95.04	ND	99.01	mg/Kg	96%		75-125	3	20	0.99
Vanadium	150.7	43.86	99.01	mg/Kg	108%		75-125	3	20	0.99
Zinc	146.7	57.91	99.01	mg/Kg	90%		75-125	4	20	0.99

Type:	Blank	Lab ID:	QC944121	Batch:	274073
Matrix:	Soil	Method:	EPA 8015M	Prep Method:	EPA 3580

QC944121 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
GRO C6-C10	ND		mg/Kg	10	09/16/21	09/17/21
DRO C10-C28	ND		mg/Kg	10	09/16/21	09/17/21
ORO C28-C44	ND		mg/Kg	20	09/16/21	09/17/21
Surrogates				Limits		
n-Triacontane	95%		%REC	70-130	09/16/21	09/17/21

Type: Lab Control Sample Lab ID: QC944122 Batch: 274073

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580

QC944122 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	244.2	250.0	mg/Kg	98%	76-122
Surrogates					
n-Triacontane	9.937	10.00	mg/Kg	99%	70-130

Type: Matrix Spike Lab ID: QC944123 Batch: 274073

Matrix (Source ID): Soil (450596-003) Method: EPA 8015M Prep Method: EPA 3580

Source Sample

QC944123 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF	
Diesel C10-C28	3,869	4422	248.8	mg/Kg	-222%	NM	62-126	20	
Surrogates									
n-Triacontane	14.66		9.950	mg/Kg		DO	70-130	20	

Type: Matrix Spike Duplicate Lab ID: QC944124 Batch: 274073

Matrix (Source ID): Soil (450596-003) Method: EPA 8015M Prep Method: EPA 3580

Source

		Sample							RPD	
QC944124 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Diesel C10-C28	2,426	4422	250.0	mg/Kg	-798%	NM	62-126	46*	35	20
Surrogates										
n-Triacontane	13.95		10.00	mg/Kg		DO	70-130			20

Type: Blank Lab ID: QC944133 Batch: 274076

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

QC944133 Analyte	Result	Qual Units	RL	Prepared	Analyzed
3-Chloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	09/16/21	09/16/21
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	09/16/21	09/16/21
Freon 12	ND	ug/Kg	5.0	09/16/21	09/16/21
Chloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Vinyl Chloride	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromomethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Chloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Trichlorofluoromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Acetone	ND	ug/Kg	100	09/16/21	09/16/21
Freon 113	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1-Dichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
Methylene Chloride	ND	ug/Kg	5.0	09/16/21	09/16/21
MTBE	ND	ug/Kg	5.0	09/16/21	09/16/21
trans-1,2-Dichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1-Dichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
2-Butanone	ND	ug/Kg	100	09/16/21	09/16/21
cis-1,2-Dichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
2,2-Dichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Chloroform	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromochloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,1-Trichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1-Dichloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
Carbon Tetrachloride	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Benzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Trichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromodichloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Dibromomethane	ND	ug/Kg	5.0	09/16/21	09/16/21
4-Methyl-2-Pentanone	ND	ug/Kg	5.0	09/16/21	09/16/21
cis-1,3-Dichloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
Toluene	ND	ug/Kg	5.0	09/16/21	09/16/21
trans-1,3-Dichloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,2-Trichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,3-Dichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Tetrachloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
Dibromochloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dibromoethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Chlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Ethylbenzene	ND ND	ug/Kg	5.0	09/16/21	09/16/21

QC944133 Analyte	Result	Qual Units	RL	Prepared	Analyzed
m,p-Xylenes	ND	ug/Kg	10	09/16/21	09/16/21
o-Xylene	ND	ug/Kg	5.0	09/16/21	09/16/21
Styrene	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromoform	ND	ug/Kg	5.0	09/16/21	09/16/21
Isopropylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,3-Trichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Propylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
2-Chlorotoluene	ND	ug/Kg	5.0	09/16/21	09/16/21
4-Chlorotoluene	ND	ug/Kg	5.0	09/16/21	09/16/21
tert-Butylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
sec-Butylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
para-Isopropyl Toluene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,3-Dichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,4-Dichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
n-Butylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Hexachlorobutadiene	ND	ug/Kg	5.0	09/16/21	09/16/21
Naphthalene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Xylene (total)	ND	ug/Kg	5.0	09/16/21	09/16/21
Surrogates			Limits		
Dibromofluoromethane	96%	%REC	70-130	09/16/21	09/16/21
1,2-Dichloroethane-d4	104%	%REC	70-145	09/16/21	09/16/21
Toluene-d8	103%	%REC	70-145	09/16/21	09/16/21
Bromofluorobenzene	96%	%REC	70-145	09/16/21	09/16/21
•					

Type: Lab Control Sample	Lab ID: QC944134	Batch: 274076
Matrix: Soil	Method: EPA 8260B	Prep Method: EPA 5035

QC944134 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	52.68	50.00	ug/Kg	105%	70-131
MTBE	57.25	50.00	ug/Kg	115%	69-130
Benzene	49.96	50.00	ug/Kg	100%	70-130
Trichloroethene	50.31	50.00	ug/Kg	101%	70-130
Toluene	53.41	50.00	ug/Kg	107%	70-130
Chlorobenzene	52.11	50.00	ug/Kg	104%	70-130
Surrogates					
Dibromofluoromethane	48.41	50.00	ug/Kg	97%	70-130
1,2-Dichloroethane-d4	49.88	50.00	ug/Kg	100%	70-145
Toluene-d8	52.59	50.00	ug/Kg	105%	70-145
Bromofluorobenzene	50.65	50.00	ug/Kg	101%	70-145

Type: Lab Control Sample Duplicate	Lab ID: QC944135	Batch: 274076
Matrix: Soil	Method: EPA 8260B	Prep Method: EPA 5035

							RPD
Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim
47.62	50.00	ug/Kg	95%		70-131	10	33
51.91	50.00	ug/Kg	104%		69-130	10	30
46.64	50.00	ug/Kg	93%		70-130	7	30
43.70	50.00	ug/Kg	87%		70-130	14	30
48.45	50.00	ug/Kg	97%		70-130	10	30
47.38	50.00	ug/Kg	95%		70-130	10	30
49.13	50.00	ug/Kg	98%		70-130		
49.16	50.00	ug/Kg	98%		70-145		
51.69	50.00	ug/Kg	103%		70-145		
49.34	50.00	ug/Kg	99%		70-145		
	47.62 51.91 46.64 43.70 48.45 47.38 49.13 49.16 51.69	47.62 50.00 51.91 50.00 46.64 50.00 43.70 50.00 48.45 50.00 47.38 50.00 49.13 50.00 49.16 50.00 51.69 50.00	47.62 50.00 ug/Kg 51.91 50.00 ug/Kg 46.64 50.00 ug/Kg 43.70 50.00 ug/Kg 48.45 50.00 ug/Kg 47.38 50.00 ug/Kg 49.13 50.00 ug/Kg 49.16 50.00 ug/Kg 51.69 50.00 ug/Kg	47.62 50.00 ug/Kg 95% 51.91 50.00 ug/Kg 104% 46.64 50.00 ug/Kg 93% 43.70 50.00 ug/Kg 87% 48.45 50.00 ug/Kg 97% 47.38 50.00 ug/Kg 95% 49.13 50.00 ug/Kg 98% 49.16 50.00 ug/Kg 98% 51.69 50.00 ug/Kg 103%	47.62 50.00 ug/Kg 95% 51.91 50.00 ug/Kg 104% 46.64 50.00 ug/Kg 93% 43.70 50.00 ug/Kg 87% 48.45 50.00 ug/Kg 97% 47.38 50.00 ug/Kg 95% 49.13 50.00 ug/Kg 98% 49.16 50.00 ug/Kg 98% 51.69 50.00 ug/Kg 103%	47.62 50.00 ug/Kg 95% 70-131 51.91 50.00 ug/Kg 104% 69-130 46.64 50.00 ug/Kg 93% 70-130 43.70 50.00 ug/Kg 87% 70-130 48.45 50.00 ug/Kg 97% 70-130 47.38 50.00 ug/Kg 95% 70-130 49.13 50.00 ug/Kg 98% 70-130 49.16 50.00 ug/Kg 98% 70-145 51.69 50.00 ug/Kg 103% 70-145	47.62 50.00 ug/Kg 95% 70-131 10 51.91 50.00 ug/Kg 104% 69-130 10 46.64 50.00 ug/Kg 93% 70-130 7 43.70 50.00 ug/Kg 87% 70-130 14 48.45 50.00 ug/Kg 97% 70-130 10 47.38 50.00 ug/Kg 95% 70-130 10 49.13 50.00 ug/Kg 98% 70-130 49.16 50.00 ug/Kg 98% 70-145 51.69 50.00 ug/Kg 103% 70-145

Type: Blank Lab ID: QC944231 Batch: 274112

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC944231 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Mercury	ND		mg/Kg	0.14	09/16/21	09/17/21

Type: Lab Control Sample Lab ID: QC944232 Batch: 274112

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC944232 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Mercury	0.8546	0.8333	mg/Kg	103%	80-120

Type: Matrix Spike Lab ID: QC944233 Batch: 274112

Matrix (Source ID): Soil (450593-001) Method: EPA 7471A Prep Method: METHOD

Source

		Sample						
QC944233 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Mercury	0.9426	ND	0.9259	mg/Kg	102%		75-125	1.1

Type: Matrix Spike Duplicate Lab ID: QC944234 Batch: 274112

Matrix (Source ID): Soil (450593-001) Method: EPA 7471A Prep Method: METHOD

Source

		Sample							RPD	
QC944234 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Mercury	0.9009	ND	0.8772	mg/Kg	103%		75-125	1	20	1.1

[#] CCV drift outside limits; average CCV drift within limits per method requirements

DO Diluted Out

ND Not Detected

NM Not Meaningful

Value is outside QC limits

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 450596

Report Level: II

Report Date: 09/24/2021

Analytical Report *prepared for:*

Mike Van Fleet Converse Consultants 717 S. Myrtle Ave. Monrovia, CA 91016

Location: Artevel Phase II 21-16-121-02

Authorized for release by:

Jim Lin, Service Center Manager

Jim.lin@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105, CDC ELITE Member

Sample Summary

Mike Van Fleet Lab Job #: 450596

Converse Consultants Location: Artevel Phase II 21-16-121-02

717 S. Myrtle Ave.

Date Received: 09/15/21

Monrovia, CA 91016

Sample ID	Lab ID	Collected	Matrix
UST-1-5	450596-001	09/15/21 10:03	Soil
UST-1-10	450596-002	09/15/21 10:05	Soil
UST-1-15	450596-003	09/15/21 10:06	Soil
UST-1-20	450596-004	09/15/21 10:07	Soil
UST-1-25	450596-005	09/15/21 10:08	Soil
UST-2-5	450596-006	09/15/21 10:52	Soil
UST-2-10	450596-007	09/15/21 10:53	Soil
UST-2-15	450596-008	09/15/21 10:54	Soil
UST-2-20	450596-009	09/15/21 10:57	Soil
UST-2-25	450596-010	09/15/21 10:59	Soil

Case Narrative

Converse Consultants 717 S. Myrtle Ave.

Monrovia, CA 91016

Mike Van Fleet

Lab Job Number: 450596

Location: Artevel Phase II 21-16-121-02

Date Received: 09/15/21

This data package contains sample and QC results for eight soil samples, requested for the above referenced project on 09/15/21. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015M):

High RPD was observed for diesel C10-C28 in the MS/MSD of UST-1-15 (lab # 450596-003); the high RPD was not associated with any reported results. Low surrogate recovery was observed for n-triacontane in the MS for batch 274420; the parent sample was not a project sample. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

UST-1-15 (lab # 450596-003) was diluted due to high hydrocarbons. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

Low recoveries were observed for antimony in the MS/MSD of AST-1-2 (lab # 450593-001); the associated RPD was within limits. High recovery was observed for barium in the MSD of AST-1-2 (lab # 450593-001). High RPD was also observed for barium in the MS/MSD of AST-1-2 (lab # 450593-001). No other analytical problems were encountered.

Stands St		7 H H	F	<u> </u>	Chai	Chain of Custody Record	ecord	Turn /	Around Jir	Turn Around Time (rush by advanced notice only)	nced notice only)
A N A L Y T L C A L Page:	スロー	I I			b No:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	Standard:	8	5 Day:	3 Day:
Contained Cont	AZA I		Ö	닐	ge:	of		2 Day:	•	1 Day:	Custom TAT:
##\/A ##	<< Select a Labor	atory >>>	Aue, Ore	3	W = Wa	Matrix: A = Air ter DW = Drinkin P = Pure Product	S = Soil/Solid g Wate SD = Se SFA = Sea Wate	ediment er	1 = Na2S2O3 $4 = H2SO4$;; ^c ^c	
Colored Name Project Information Analysis Request Name Application Appli	#N/A			,]	SW = Sv	T = Tissue		= Other	h 7		(lab use only)
Service Serv	CUSTOMER INFORMATION	•		PROJECT	INFORM,	ATION		Analysis Requ	uest	Test Instr	uctions / Comments
	Constant Consell		Name:	140		have 11	7				
117 5. Hard Laboration Address: Fireful & Planfor Medical Company Part Laboration Processes (Color of Samples Bir. Laborate Laborate Processes (Color of Samples Bir. Laborate Laborate Processes (Color of Samples Bir. Laborate Laborate Processes (Color of Samples Bir. Laborate Bir.	M. Jay Va		Number:	-12		21-02	/11				
11.1 \$\int_{\text{th}} \text{Area_{\text{L}}}	mydn Llinta	JA CONSIL	Plo.#: On				- <i>երև</i> Լ				
Colon Colo	747 S. March	ላነት	Address:	Eve	737	Brailir Av	15/2				
C2 (L - 9 2) - (2000) Global 10: Lay Lay Ly		non le			,	· •	D)(. 02			
Sample Date Time Sampling Sample Date Time Date Time Date Time Date	26-92		Global ID:				19				
Sampling Sampling Sampling Time Ti			Sampled By:	Kasi	ין אשט	Sallinar	- 7 - 7:				
10 : 03 15 20 10 : 05 10 :	Sample ID	Sampling Date				0	727ml NJ[· · · · · · · · · · · · · · · · · · ·		
10:05 10:06 10:06 10:06 10:06 10:06 10:07	1-1-150	_	<u> </u>			ar Peraire	√ √ √ √				
-15	1-387		(O)	50	_	-	<i>></i> <i>></i>				
-25 10:08 10			$ \omega $	90			/		-		
-25 10:08 -5 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	1-720		3 O1	ري						prog	
-5 -10 10:53 10:53 10:53 10:53 10:57 10:57 10:59	1-750		, M	က္က						hold	
2-25 Signature Print Name Company / Title Date / Time 3y: 2-27 Signature Print Name Company / Title Date / Time Date / Time A/15 (2/ 16) 3y:			10.	52			\frac{5}{5}				
2-25 \(\text{Lo:571} \) \(\text{Lo:57} \) \(\tex	7 UST-2-10		; W	53			\frac{\delta}{\delta}				
2-25 Signature Sy: Company Title Date / Time Sy: Company Title Date / Time Sy: Company Title Date / Time Date / Time Sy: Company Title Date / Time	UST-		. (2)	PS.			\frac{2}{2}				
2-25 Signature	1257		3	17.1						Lald	
Signature Print Name Company / Title Date / Time 3y:	C37-	ン	ე ე		<u> </u>	<i>⇒</i>)				histol	
3y: Cut May beardy withings convex lovallato 9/15/21 1 3y: EAGL AIS (21 16		ignature			Print A	Jame		/	Tjtle	Q	/
3y: EA(SL 9/15(2/ 1)	¹ Relinquished By:	The same		1505 F		11,0	(Bride	K Correl	the th	181	<i>)</i> [
2 Relinquished By: V V 2 Received By: . . 3 Received By: . . 3 Received By: . .	¹ Received By:	× フ		200	PADIA	4	(FEETE)	4		115	
² Received By: ³ Relinquished By: ³ Received By:	² Relinquished By:	>	>		_						
³ Relinquished By: ³ Received By:	² Received By:				•						
³ Received By:	³ Relinquished By:								:		
	³ Received By:										

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
	Project:			
Date Received: 9/15/21	Sampler's Name Present:	Yes	No	
Section 2				
Sample(s) received in a cooler? ✓ Yes, How many? 1	No (skip section 2)	•	Temp (°C) (No Cooler)	
_		#4:	,NO COOIEI)	
(Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptan	· · · · · · · · · · · · · · · · · · ·		for samples	collected
the same day as sample receipt to have a higher temperatu	re as long as there is evidence that cooli	ng has begu	ın.)	
Shipping Information:				
Section 3				
Was the cooler packed with: ✓ Ice ☐ Ice Packs	Bubble Wrap Styrofo	am		
Paper None	Other			
Cooler Temp (°C): #1: 3.2 #2:	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		√		, , ,
Are sample IDs present?		√		
Are sampling dates & times present?		√		
Is a relinquished signature present?		✓		
Are the tests required clearly indicated on the COC?		✓		
Are custody seals present?			✓	
If custody seals are present, were they intact?				✓
Are all samples sealed in plastic bags? (Recommended fo	r Microbiology samples)	✓		
Did all samples arrive intact? If no, indicate in Section 4 be		✓		
Did all bottle labels agree with COC? (ID, dates and times)		✓		
Were the samples collected in the correct containers for t	the required tests?	✓		
Are the containers labeled with the correct preserva				\
Is there headspace in the VOA vials greater than 5-6 mm				1
Was a sufficient amount of sample submitted for the requ	uested tests?	✓		
Section 5 Explanations/Comments				
. ,				
Soction 6	1			
Section 6 For discrepancies, how was the Project Manager notified:	Narbal BM Initials.	nto Min -		
l discrepancies, now was the Project Manager notined.	Email (email sent to/or			
Project Manager's response:		'/	/	
Troject Manager 3 response.				
(NM)	Date: 9/15/21			
Completed By: \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Date. (11)			
Enthalpy Analytical, a subsidiary of M	Iontrose Environmental Group, Inc.			

931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209 www.enthalpy.com/socal Sample Acceptance Checklist – Rev 4, 8/8/2017

5 of 37

Jim Lin

From: Michael A. Van Fleet <mvanfleet@converseconsultants.com> on behalf of Michael A.

Van Fleet

Sent: Wednesday, September 22, 2021 10:21 AM

To: Jim.lin@enthalpy.com

Cc: Kaspar Wittlinger; Laura A. Tanaka

Subject: [EXTERNAL] RE: Artevel Phase II 21-16-121-02 - Enthalpy Data (450596) (Invoice

CINV-056087)

Jim,

Please have archived samples UST-1-20 and UST-1-25 analyzed for THP in the diesel range on a 2-day TAT.

Thanks, Mike

From: Jim Lin <Jim.lin@enthalpy.com>

Sent: Wednesday, September 22, 2021 10:03 AM

To: Michael A. Van Fleet <mvanfleet@converseconsultants.com>

Subject: Artevel Phase II 21-16-121-02 - Enthalpy Data (450596) (Invoice CINV-056087)

Hi Michael Van,

Data qualifiers and additional information necessary for the interpretation of the test results are contained in the PDF file and may not be included in the EDD.

Please let us know if you need to release sample(s) from HOLD.

Please find attached the following files:

? Invoice

? PDF Deliverable

? Standard Pivot Table, Compound EDD (450596_standard_excel_pivot_compound.zip)

Email was also sent to: jim.lin@enthalpy.com

Jim Lin

Service Center Manager

931 W. Barkley Ave., Orange, CA 92868 O: 714-771-6900 M: 818-319-2359

Jim.Lin@enthalpy.com

To help protect the air we breathe, the water we drink, and the soil that fee ds us.

Please take a moment to provide <u>customer feedback</u>
Terms and Conditions & Enthalpy Sample Acceptance Policy

https://enthalpy.com/news-events/

Mike Van Fleet Converse Consultants 717 S. Myrtle Ave. Monrovia, CA 91016

Lab Job #: 450596 Location: Artevel Phase II 21-16-121-02 Date Received: 09/15/21

Sample ID: UST-1-5 Lab ID: 450596-001 Collected: 09/15/21 10:03

450596-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Antimony	ND	mg/Kg	2.9	0.98	274063	09/16/21	09/17/21	KLN
Arsenic	3.0	mg/Kg	0.98	0.98	274063	09/16/21	09/17/21	KLN
Barium	89	mg/Kg	0.98	0.98	274063	09/16/21	09/17/21	KLN
Beryllium	0.49	mg/Kg	0.49	0.98	274063	09/16/21	09/17/21	KLN
Cadmium	ND	mg/Kg	0.49	0.98	274063	09/16/21	09/17/21	KLN
Chromium	22	mg/Kg	0.98	0.98	274063	09/16/21	09/17/21	KLN
Cobalt	9.1	mg/Kg	0.49	0.98	274063	09/16/21	09/17/21	KLN
Copper	14	mg/Kg	0.98	0.98	274063	09/16/21	09/17/21	KLN
Lead	12	mg/Kg	0.98	0.98	274063	09/16/21	09/17/21	KLN
Molybdenum	ND	mg/Kg	0.98	0.98	274063	09/16/21	09/17/21	KLN
Nickel	15	mg/Kg	0.98	0.98	274063	09/16/21	09/17/21	KLN
Selenium	ND	mg/Kg	2.9	0.98	274063	09/16/21	09/17/21	KLN
Silver	ND	mg/Kg	0.49	0.98	274063	09/16/21	09/17/21	KLN
Thallium	ND	mg/Kg	2.9	0.98	274063	09/16/21	09/17/21	KLN
Vanadium	43	mg/Kg	0.98	0.98	274063	09/16/21	09/17/21	KLN
Zinc	48	mg/Kg	4.9	0.98	274063	09/16/21	09/17/21	KLN
Method: EPA 7471A								
Prep Method: METHOD								
Mercury	ND	mg/Kg	0.15	1.1	274112	09/16/21	09/17/21	TNN
Method: EPA 8015M								
Prep Method: EPA 3580								
GRO C6-C10	ND	mg/Kg	10	1	274073	09/16/21	09/17/21	MES
DRO C10-C28	16	mg/Kg	10	1	274073	09/16/21	09/17/21	MES
ORO C28-C44	ND	mg/Kg	20	1	274073	09/16/21	09/17/21	MES
0								
Surrogates			Limits					
Surrogates n-Triacontane	92%	%REC	70-130	1	274073	09/16/21	09/17/21	MES
n-Triacontane	92%	%REC		1	274073	09/16/21	09/17/21	MES
n-Triacontane Method: EPA 8260B	92%	%REC		1	274073	09/16/21	09/17/21	MES
n-Triacontane Method: EPA 8260B	92% ND	%REC ug/Kg		0.93	274073	09/16/21	09/17/21	MES
n-Triacontane Method: EPA 8260B Prep Method: EPA 5035			70-130					
n-Triacontane Method: EPA 8260B Prep Method: EPA 5035 3-Chloropropene	ND	ug/Kg	70-130	0.93	274076	09/17/21	09/17/21	RAO
n-Triacontane Method: EPA 8260B Prep Method: EPA 5035 3-Chloropropene cis-1,4-Dichloro-2-butene	ND ND	ug/Kg ug/Kg	70-130 4.6 4.6	0.93	274076 274076	09/17/21 09/17/21	09/17/21 09/17/21	RAO RAO
n-Triacontane Method: EPA 8260B Prep Method: EPA 5035 3-Chloropropene cis-1,4-Dichloro-2-butene trans-1,4-Dichloro-2-butene	ND ND ND	ug/Kg ug/Kg ug/Kg	70-130 4.6 4.6 4.6	0.93 0.93 0.93	274076 274076 274076	09/17/21 09/17/21 09/17/21	09/17/21 09/17/21 09/17/21	RAO RAO RAO
n-Triacontane Method: EPA 8260B Prep Method: EPA 5035 3-Chloropropene cis-1,4-Dichloro-2-butene trans-1,4-Dichloro-2-butene Freon 12	ND ND ND	ug/Kg ug/Kg ug/Kg ug/Kg	70-130 4.6 4.6 4.6 4.6	0.93 0.93 0.93 0.93	274076 274076 274076 274076	09/17/21 09/17/21 09/17/21 09/17/21	09/17/21 09/17/21 09/17/21 09/17/21	RAO RAO RAO

	711	ary sis riesuris	101	730	330			
450596-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Chloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Trichlorofluoromethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Acetone	ND	ug/Kg	93	0.93	274076	09/17/21	09/17/21	RAO
Freon 113	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Methylene Chloride	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
MTBE	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
trans-1,2-Dichloroethene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
2-Butanone	ND	ug/Kg	93	0.93	274076	09/17/21	09/17/21	RAO
cis-1,2-Dichloroethene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
2,2-Dichloropropane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Chloroform	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Bromochloromethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1,1-Trichloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1-Dichloropropene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Carbon Tetrachloride	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Benzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Trichloroethene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dichloropropane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Bromodichloromethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Dibromomethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
4-Methyl-2-Pentanone	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
cis-1,3-Dichloropropene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Toluene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
trans-1,3-Dichloropropene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1,2-Trichloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,3-Dichloropropane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Tetrachloroethene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Dibromochloromethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dibromoethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Chlorobenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Ethylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
m,p-Xylenes	ND	ug/Kg	9.3	0.93	274076	09/17/21	09/17/21	RAO
o-Xylene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Styrene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Bromoform	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Isopropylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1,2,2-Tetrachloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2,3-Trichloropropane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Propylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Bromobenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,3,5-Trimethylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
2-Chlorotoluene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO

450596-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
4-Chlorotoluene	ND	Guui	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
tert-Butylbenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
•									
1,2,4-Trimethylbenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
sec-Butylbenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
para-Isopropyl Toluene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,3-Dichlorobenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,4-Dichlorobenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
n-Butylbenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dichlorobenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2,4-Trichlorobenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Hexachlorobutadiene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Naphthalene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2,3-Trichlorobenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Xylene (total)	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Surrogates				Limits					
Dibromofluoromethane	96%		%REC	70-145	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane-d4	101%		%REC	70-145	0.93	274076	09/17/21	09/17/21	RAO
Toluene-d8	100%		%REC	70-145	0.93	274076	09/17/21	09/17/21	RAO
Bromofluorobenzene	96%		%REC	70-145	0.93	274076	09/17/21	09/17/21	RAO

Sample ID: UST-1-10 Lab ID: 450596-002 Collected: 09/15/21 10:05

450596-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	3.1	1	274063	09/16/21	09/17/21	KLN
Arsenic	6.2		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Barium	76		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Beryllium	0.55		mg/Kg	0.51	1	274063	09/16/21	09/17/21	KLN
Cadmium	ND		mg/Kg	0.51	1	274063	09/16/21	09/17/21	KLN
Chromium	22		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Cobalt	7.5		mg/Kg	0.51	1	274063	09/16/21	09/17/21	KLN
Copper	18		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Lead	5.1		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Molybdenum	ND		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Nickel	15		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Selenium	ND		mg/Kg	3.1	1	274063	09/16/21	09/17/21	KLN
Silver	ND		mg/Kg	0.51	1	274063	09/16/21	09/17/21	KLN
Thallium	ND		mg/Kg	3.1	1	274063	09/16/21	09/17/21	KLN
Vanadium	50		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Zinc	46		mg/Kg	5.1	1	274063	09/16/21	09/17/21	KLN
Method: EPA 7471A Prep Method: METHOD	ND		20 01/1/ 01	0.10		074110	00/10/01	00/17/01	TNINI
Mercury	ND		mg/Kg	0.16	1.1	274112	09/16/21	09/17/21	TNN
Method: EPA 8015M Prep Method: EPA 3580									
GRO C6-C10	ND		mg/Kg	10	1	274073	09/16/21	09/17/21	MES
DRO C10-C28	ND		mg/Kg	10	1	274073	09/16/21	09/17/21	MES
ORO C28-C44	ND		mg/Kg	20	1	274073	09/16/21	09/17/21	MES
Surrogates				Limits					
n-Triacontane	88%		%REC	70-130	1	274073	09/16/21	09/17/21	MES
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
cis-1,4-Dichloro-2-butene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
trans-1,4-Dichloro-2-butene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Freon 12	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Chloromethane	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Vinyl Chloride	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Bromomethane	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Chloroethane	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Trichlorofluoromethane	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Acetone	ND		ug/Kg	85	0.85	274076	09/17/21	09/17/21	RAO
Freon 113	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
.,. בוכות בוכים וויים	.,,,		~9,1,8		0.00		55, . , , = 1	55, . , , = 1	, .0

	711	ary sis riesuris	101	730	330			
450596-002 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methylene Chloride	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
MTBE	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
trans-1,2-Dichloroethene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
2-Butanone	ND	ug/Kg	85	0.85	274076	09/17/21	09/17/21	RAO
cis-1,2-Dichloroethene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
2,2-Dichloropropane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Chloroform	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Bromochloromethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,1,1-Trichloroethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,1-Dichloropropene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Carbon Tetrachloride	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Benzene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Trichloroethene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,2-Dichloropropane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Bromodichloromethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Dibromomethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
4-Methyl-2-Pentanone	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
cis-1,3-Dichloropropene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Toluene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
trans-1,3-Dichloropropene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,1,2-Trichloroethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,3-Dichloropropane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Tetrachloroethene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Dibromochloromethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,2-Dibromoethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Chlorobenzene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Ethylbenzene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
m,p-Xylenes	ND	ug/Kg	8.5	0.85	274076	09/17/21	09/17/21	RAO
o-Xylene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Styrene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Bromoform	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Isopropylbenzene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,1,2,2-Tetrachloroethane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,2,3-Trichloropropane	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Propylbenzene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Bromobenzene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,3,5-Trimethylbenzene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
2-Chlorotoluene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
4-Chlorotoluene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
tert-Butylbenzene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,2,4-Trimethylbenzene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
sec-Butylbenzene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
para-Isopropyl Toluene	ND	ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Para Isopropyr rolderie	110	49/119	1.2	0.00	27 1070	00,17/21	00/11/21	1.7.0

450596-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
1,3-Dichlorobenzene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,4-Dichlorobenzene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
n-Butylbenzene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,2-Dichlorobenzene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,2,4-Trichlorobenzene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Hexachlorobutadiene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Naphthalene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
1,2,3-Trichlorobenzene	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Xylene (total)	ND		ug/Kg	4.2	0.85	274076	09/17/21	09/17/21	RAO
Surrogates				Limits					
Dibromofluoromethane	99%		%REC	70-145	0.85	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane-d4	101%		%REC	70-145	0.85	274076	09/17/21	09/17/21	RAO
Toluene-d8	99%		%REC	70-145	0.85	274076	09/17/21	09/17/21	RAO
Bromofluorobenzene	95%		%REC	70-145	0.85	274076	09/17/21	09/17/21	RAO

Sample ID: UST-1-15 Lab ID: 450596-003 Collected: 09/15/21 10:06

450596-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	2.9	0.96	274063	09/16/21	09/17/21	KLN
Arsenic	5.4		mg/Kg	0.96	0.96	274063	09/16/21	09/17/21	KLN
Barium	120		mg/Kg	0.96	0.96	274063	09/16/21	09/17/21	KLN
Beryllium	0.58		mg/Kg	0.48	0.96	274063	09/16/21	09/17/21	KLN
Cadmium	ND		mg/Kg	0.48	0.96	274063	09/16/21	09/17/21	KLN
Chromium	49		mg/Kg	0.96	0.96	274063	09/16/21	09/17/21	KLN
Cobalt	9.8		mg/Kg	0.48	0.96	274063	09/16/21	09/17/21	KLN
Copper	23		mg/Kg	0.96	0.96	274063	09/16/21	09/17/21	KLN
Lead	7.5		mg/Kg	0.96	0.96	274063	09/16/21	09/17/21	KLN
Molybdenum	ND		mg/Kg	0.96	0.96	274063	09/16/21	09/17/21	KLN
Nickel	19		mg/Kg	0.96	0.96	274063	09/16/21	09/17/21	KLN
Selenium	ND		mg/Kg	2.9	0.96	274063	09/16/21	09/17/21	KLN
Silver	ND		mg/Kg	0.48	0.96	274063	09/16/21	09/17/21	KLN
Thallium	ND		mg/Kg	2.9	0.96	274063	09/16/21	09/17/21	KLN
Vanadium	72		mg/Kg	0.96	0.96	274063	09/16/21	09/17/21	KLN
Zinc	73		mg/Kg	4.8	0.96	274063	09/16/21	09/17/21	KLN
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	ND		mg/Kg	0.14	1	274112	09/16/21	09/17/21	TNN
Prep Method: EPA 3580									
GRO C6-C10	ND		mg/Kg	200	20	274073	09/16/21	09/17/21	MES
DRO C10-C28	4,400		mg/Kg	200	20	274073	09/16/21	09/17/21	MES
ORO C28-C44	ND		mg/Kg	400	20	274073	09/16/21	09/17/21	MES
Surrogates				Limits					
n-Triacontane		DO	%REC	70-130	20	274073	09/16/21	09/17/21	MES
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
cis-1,4-Dichloro-2-butene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
trans-1,4-Dichloro-2-butene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Freon 12	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Chloromethane	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Vinyl Chloride	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Bromomethane	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Chloroethane	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Trichlorofluoromethane	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Acetone	ND		ug/Kg	9,600	96	274017	09/16/21	09/16/21	RAO
Freon 113	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,1-Dichloroethene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO

	~ 110	ary SiS riese	1113 101	730	330			
450596-003 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methylene Chloride	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
MTBE	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
trans-1,2-Dichloroethene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,1-Dichloroethane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
2-Butanone	ND	ug/Kg	9,600	96	274017	09/16/21	09/16/21	RAO
cis-1,2-Dichloroethene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
2,2-Dichloropropane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Chloroform	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Bromochloromethane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,1,1-Trichloroethane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,1-Dichloropropene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Carbon Tetrachloride	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,2-Dichloroethane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Benzene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Trichloroethene	ND		480	96	274017	09/16/21	09/16/21	RAO
	ND	ug/Kg						
1,2-Dichloropropane Bromodichloromethane		ug/Kg	480	96	274017 274017	09/16/21	09/16/21	RAO
	ND	ug/Kg	480	96		09/16/21	09/16/21	RAO
Dibromomethane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
4-Methyl-2-Pentanone	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
cis-1,3-Dichloropropene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Toluene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
trans-1,3-Dichloropropene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,1,2-Trichloroethane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,3-Dichloropropane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Tetrachloroethene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Dibromochloromethane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,2-Dibromoethane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Chlorobenzene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,1,1,2-Tetrachloroethane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Ethylbenzene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
m,p-Xylenes	ND	ug/Kg	960	96	274017	09/16/21	09/16/21	RAO
o-Xylene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Styrene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Bromoform	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Isopropylbenzene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,1,2,2-Tetrachloroethane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,2,3-Trichloropropane	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Propylbenzene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Bromobenzene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,3,5-Trimethylbenzene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
2-Chlorotoluene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
4-Chlorotoluene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
tert-Butylbenzene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,2,4-Trimethylbenzene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
sec-Butylbenzene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
para-Isopropyl Toluene	ND	ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
L		- 9' - 9				/	,	

450596-003 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
1,3-Dichlorobenzene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,4-Dichlorobenzene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
n-Butylbenzene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,2-Dichlorobenzene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,2,4-Trichlorobenzene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Hexachlorobutadiene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Naphthalene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
1,2,3-Trichlorobenzene	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Xylene (total)	ND		ug/Kg	480	96	274017	09/16/21	09/16/21	RAO
Surrogates				Limits					
Dibromofluoromethane	95%		%REC	70-145	96	274017	09/16/21	09/16/21	RAO
1,2-Dichloroethane-d4	92%		%REC	70-145	96	274017	09/16/21	09/16/21	RAO
Toluene-d8	107%		%REC	70-145	96	274017	09/16/21	09/16/21	RAO
Bromofluorobenzene	96%		%REC	70-145	96	274017	09/16/21	09/16/21	RAO

Sample ID: UST-1-20 Lab ID: 450596-004 Collected: 09/15/21 10:07

Matrix: Soil

450596-004 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8015M Prep Method: EPA 3580								
GRO C6-C10	ND	mg/Kg	10	1	274420	09/22/21	09/23/21	TJW
DRO C10-C28	ND	mg/Kg	10	1	274420	09/22/21	09/23/21	TJW
ORO C28-C44	ND	mg/Kg	20	1	274420	09/22/21	09/23/21	TJW
Surrogates			Limits					
n-Triacontane	92%	%REC	70-130	1	274420	09/22/21	09/23/21	TJW

Sample ID: UST-1-25 Lab ID: 450596-005 Collected: 09/15/21 10:08

Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
ND		mg/Kg	10	1	274420	09/22/21	09/23/21	TJW
ND		mg/Kg	10	1	274420	09/22/21	09/23/21	TJW
ND		mg/Kg	20	1	274420	09/22/21	09/23/21	TJW
			Limits					
90%		%REC	70-130	1	274420	09/22/21	09/23/21	TJW
	ND ND ND	ND ND ND	ND mg/Kg ND mg/Kg ND mg/Kg	ND mg/Kg 10 ND mg/Kg 10 ND mg/Kg 20 Limits	ND mg/Kg 10 1 ND mg/Kg 10 1 ND mg/Kg 20 1 Limits	ND mg/Kg 10 1 274420 ND mg/Kg 10 1 274420 ND mg/Kg 20 1 274420 Limits	ND mg/Kg 10 1 274420 09/22/21 ND mg/Kg 10 1 274420 09/22/21 ND mg/Kg 20 1 274420 09/22/21 Limits	ND mg/Kg 10 1 274420 09/22/21 09/23/21 ND mg/Kg 10 1 274420 09/22/21 09/23/21 ND mg/Kg 20 1 274420 09/22/21 09/23/21 Limits

Sample ID: UST-2-5 Lab ID: 450596-006 Collected: 09/15/21 10:52

450596-006 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	3.0	0.99	274063	09/16/21	09/17/21	KLN
Arsenic	2.6		mg/Kg	0.99	0.99	274063	09/16/21	09/17/21	KLN
Barium	100		mg/Kg	0.99	0.99	274063	09/16/21	09/17/21	KLN
Beryllium	0.51		mg/Kg	0.50	0.99	274063	09/16/21	09/17/21	KLN
Cadmium	ND		mg/Kg	0.50	0.99	274063	09/16/21	09/17/21	KLN
Chromium	23		mg/Kg	0.99	0.99	274063	09/16/21	09/17/21	KLN
Cobalt	8.5		mg/Kg	0.50	0.99	274063	09/16/21	09/17/21	KLN
Copper	15		mg/Kg	0.99	0.99	274063	09/16/21	09/17/21	KLN
Lead	9.1		mg/Kg	0.99	0.99	274063	09/16/21	09/17/21	KLN
Molybdenum	ND		mg/Kg	0.99	0.99	274063	09/16/21	09/17/21	KLN
Nickel	15		mg/Kg	0.99	0.99	274063	09/16/21	09/17/21	KLN
Selenium	ND		mg/Kg	3.0	0.99	274063	09/16/21	09/17/21	KLN
Silver	ND		mg/Kg	0.50	0.99	274063	09/16/21	09/17/21	KLN
Thallium	ND		mg/Kg	3.0	0.99	274063	09/16/21	09/17/21	KLN
Vanadium	40		mg/Kg	0.99	0.99	274063	09/16/21	09/17/21	KLN
Zinc	61		mg/Kg	5.0	0.99	274063	09/16/21	09/17/21	KLN
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND		mg/Kg	0.16	1.1	274112	09/16/21	09/17/21	TNN
Method: EPA 8015M Prep Method: EPA 3580									
GRO C6-C10	ND		mg/Kg	10	1	274073	09/16/21	09/17/21	MES
DRO C10-C28	ND		mg/Kg	10	1	274073	09/16/21	09/17/21	MES
ORO C28-C44	ND		mg/Kg	20	1	274073	09/16/21	09/17/21	MES
Surrogates				Limits					
n-Triacontane	89%		%REC	70-130	1	274073	09/16/21	09/17/21	MES
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
cis-1,4-Dichloro-2-butene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
trans-1,4-Dichloro-2-butene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Freon 12	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Chloromethane	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Vinyl Chloride	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Bromomethane	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Chloroethane	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Trichlorofluoromethane	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Acetone	ND		ug/Kg	93	0.93	274076	09/17/21	09/17/21	RAO
Freon 113	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
,			- 3 3						

		ary sis riesuris	, 101	730	330			
450596-006 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methylene Chloride	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
MTBE	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
trans-1,2-Dichloroethene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
2-Butanone	ND	ug/Kg	93	0.93	274076	09/17/21	09/17/21	RAO
cis-1,2-Dichloroethene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
2,2-Dichloropropane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Chloroform	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Bromochloromethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1,1-Trichloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1-Dichloropropene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Carbon Tetrachloride	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
	ND ND					09/17/21	09/17/21	RAO
1,2-Dichloroethane		ug/Kg	4.6	0.93	274076			
Benzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Trichloroethene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dichloropropane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Bromodichloromethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Dibromomethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
4-Methyl-2-Pentanone	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
cis-1,3-Dichloropropene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Toluene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
trans-1,3-Dichloropropene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1,2-Trichloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,3-Dichloropropane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Tetrachloroethene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Dibromochloromethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dibromoethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Chlorobenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Ethylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
m,p-Xylenes	ND	ug/Kg	9.3	0.93	274076	09/17/21	09/17/21	RAO
o-Xylene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Styrene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Bromoform	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Isopropylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,1,2,2-Tetrachloroethane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2,3-Trichloropropane	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Propylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Bromobenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,3,5-Trimethylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
2-Chlorotoluene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
4-Chlorotoluene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
tert-Butylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2,4-Trimethylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
sec-Butylbenzene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
para-Isopropyl Toluene	ND	ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
- Para isopropyr roluelle	טוו	ug/itg	7.0	0.50	217010	03/11/21	03/11/21	1170

450596-006 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
1,3-Dichlorobenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,4-Dichlorobenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
n-Butylbenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dichlorobenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2,4-Trichlorobenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Hexachlorobutadiene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Naphthalene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
1,2,3-Trichlorobenzene	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Xylene (total)	ND		ug/Kg	4.6	0.93	274076	09/17/21	09/17/21	RAO
Surrogates				Limits					
Dibromofluoromethane	97%		%REC	70-145	0.93	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane-d4	107%		%REC	70-145	0.93	274076	09/17/21	09/17/21	RAO
Toluene-d8	99%		%REC	70-145	0.93	274076	09/17/21	09/17/21	RAO
Bromofluorobenzene	93%		%REC	70-145	0.93	274076	09/17/21	09/17/21	RAO

Sample ID: UST-2-10 Lab ID: 450596-007 Collected: 09/15/21 10:53

450596-007 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	3.1	1	274063	09/16/21	09/17/21	KLN
Arsenic	7.5		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Barium	99		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Beryllium	ND		mg/Kg	0.52	1	274063	09/16/21	09/17/21	KLN
Cadmium	ND		mg/Kg	0.52	1	274063	09/16/21	09/17/21	KLN
Chromium	20		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Cobalt	8.6		mg/Kg	0.52	1	274063	09/16/21	09/17/21	KLN
Copper	18		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Lead	4.7		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Molybdenum	ND		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Nickel	16		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Selenium	ND		mg/Kg	3.1	1	274063	09/16/21	09/17/21	KLN
Silver	ND		mg/Kg	0.52	1	274063	09/16/21	09/17/21	KLN
Thallium	ND		mg/Kg	3.1	1	274063	09/16/21	09/17/21	KLN
Vanadium	53		mg/Kg	1.0	1	274063	09/16/21	09/17/21	KLN
Zinc	45		mg/Kg	5.2	1	274063	09/16/21	09/17/21	KLN
Method: EPA 7471A Prep Method: METHOD	ND		100 pt /1/ pt	0.10		074110	00/10/01	00/17/01	TNINI
Mercury	ND		mg/Kg	0.16	1.1	274112	09/16/21	09/17/21	TNN
Method: EPA 8015M Prep Method: EPA 3580									
GRO C6-C10	ND		mg/Kg	9.9	0.99	274073	09/16/21	09/17/21	MES
DRO C10-C28	73		mg/Kg	9.9	0.99	274073	09/16/21	09/17/21	MES
ORO C28-C44	ND		mg/Kg	20	0.99	274073	09/16/21	09/17/21	MES
Surrogates				Limits					
n-Triacontane	96%		%REC	70-130	0.99	274073	09/16/21	09/17/21	MES
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
cis-1,4-Dichloro-2-butene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
trans-1,4-Dichloro-2-butene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Freon 12	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Chloromethane	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Vinyl Chloride	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Bromomethane	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Chloroethane	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Trichlorofluoromethane	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Acetone	ND		ug/Kg	86	0.86	274076	09/17/21	09/17/21	RAO
Freon 113	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,1 Didilloloculelle	ייי		~g/1.\g	7.0	3.50	_, 10,0	55/11/L1	55/11/L1	11710

	711	ary sis riesuris	, 101	730	330			
450596-007 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methylene Chloride	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
MTBE	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
trans-1,2-Dichloroethene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
2-Butanone	ND	ug/Kg	86	0.86	274076	09/17/21	09/17/21	RAO
cis-1,2-Dichloroethene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
2,2-Dichloropropane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Chloroform	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Bromochloromethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,1,1-Trichloroethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,1-Dichloropropene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Carbon Tetrachloride	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Benzene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Trichloroethene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,2-Dichloropropane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Bromodichloromethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Dibromomethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
4-Methyl-2-Pentanone	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
cis-1,3-Dichloropropene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Toluene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
trans-1,3-Dichloropropene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,1,2-Trichloroethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,3-Dichloropropane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Tetrachloroethene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Dibromochloromethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,2-Dibromoethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Chlorobenzene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Ethylbenzene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
m,p-Xylenes	ND	ug/Kg	8.6	0.86	274076	09/17/21	09/17/21	RAO
o-Xylene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Styrene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Bromoform	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Isopropylbenzene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,1,2,2-Tetrachloroethane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,2,3-Trichloropropane	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Propylbenzene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Bromobenzene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,3,5-Trimethylbenzene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
2-Chlorotoluene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
4-Chlorotoluene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
tert-Butylbenzene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,2,4-Trimethylbenzene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
sec-Butylbenzene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
para-Isopropyl Toluene	ND	ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Para Isopropyr rolderie	110	49/119	1.0	0.00	27 1070	00,17/21	00/11/21	11710

450596-007 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
1,3-Dichlorobenzene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,4-Dichlorobenzene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
n-Butylbenzene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,2-Dichlorobenzene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,2,4-Trichlorobenzene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Hexachlorobutadiene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Naphthalene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
1,2,3-Trichlorobenzene	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Xylene (total)	ND		ug/Kg	4.3	0.86	274076	09/17/21	09/17/21	RAO
Surrogates				Limits					
Dibromofluoromethane	104%		%REC	70-145	0.86	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane-d4	102%		%REC	70-145	0.86	274076	09/17/21	09/17/21	RAO
Toluene-d8	97%		%REC	70-145	0.86	274076	09/17/21	09/17/21	RAO
Bromofluorobenzene	97%		%REC	70-145	0.86	274076	09/17/21	09/17/21	RAO

Sample ID: UST-2-15 Lab ID: 450596-008 Collected: 09/15/21 10:54

450596-008 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Antimony	ND		mg/Kg	2.8	0.93	274063	09/16/21	09/17/21	KLN
Arsenic	4.3		mg/Kg	0.93	0.93	274063	09/16/21	09/17/21	KLN
Barium	130		mg/Kg	0.93	0.93	274063	09/16/21	09/17/21	KLN
Beryllium	0.85		mg/Kg	0.47	0.93	274063	09/16/21	09/17/21	KLN
Cadmium	ND		mg/Kg	0.47	0.93	274063	09/16/21	09/17/21	KLN
Chromium	32		mg/Kg	0.93	0.93	274063	09/16/21	09/17/21	KLN
Cobalt	17		mg/Kg	0.47	0.93	274063	09/16/21	09/17/21	KLN
Copper	29		mg/Kg	0.93	0.93	274063	09/16/21	09/17/21	KLN
Lead	9.3		mg/Kg	0.93	0.93	274063	09/16/21	09/17/21	KLN
Molybdenum	ND		mg/Kg	0.93	0.93	274063	09/16/21	09/17/21	KLN
Nickel	24		mg/Kg	0.93	0.93	274063	09/16/21	09/17/21	KLN
Selenium	ND		mg/Kg	2.8	0.93	274063	09/16/21	09/17/21	KLN
Silver	ND		mg/Kg	0.47	0.93	274063	09/16/21	09/17/21	KLN
Thallium	ND		mg/Kg	2.8	0.93	274063	09/16/21	09/17/21	KLN
Vanadium	82		mg/Kg	0.93	0.93	274063	09/16/21	09/17/21	KLN
Zinc	76		mg/Kg	4.7	0.93	274063	09/16/21	09/17/21	KLN
Method: EPA 7471A Prep Method: METHOD									
Mercury	ND		mg/Kg	0.16	1.1	274199	09/17/21	09/20/21	TNN
Method: EPA 8015M Prep Method: EPA 3580									
GRO C6-C10	ND		mg/Kg	50	5	274073	09/16/21	09/20/21	MES
DRO C10-C28	1,200		mg/Kg	50	5	274073	09/16/21	09/20/21	MES
ORO C28-C44	ND		mg/Kg	100	5	274073	09/16/21	09/20/21	MES
Surrogates				Limits					
n-Triacontane	94%		%REC	70-130	5	274073	09/16/21	09/20/21	MES
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
cis-1,4-Dichloro-2-butene	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
trans-1,4-Dichloro-2-butene	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Freon 12	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Chloromethane	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Vinyl Chloride	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Bromomethane	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Chloroethane	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Trichlorofluoromethane	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Acetone	ND		ug/Kg	96	0.96	274076	09/17/21	09/17/21	RAO
Freon 113	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethene	ND		ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO

	711	ary sis riesuris	, 101	730	330			
450596-008 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Methylene Chloride	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
MTBE	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
trans-1,2-Dichloroethene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,1-Dichloroethane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
2-Butanone	ND	ug/Kg	96	0.96	274076	09/17/21	09/17/21	RAO
cis-1,2-Dichloroethene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
2,2-Dichloropropane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Chloroform	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Bromochloromethane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,1,1-Trichloroethane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,1-Dichloropropene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Carbon Tetrachloride	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane	ND ND		4.8	0.96	274076	09/17/21	09/17/21	RAO
Benzene	ND	ug/Kg					09/17/21	RAO
		ug/Kg	4.8	0.96	274076	09/17/21		
Trichloroethene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,2-Dichloropropane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Bromodichloromethane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Dibromomethane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
4-Methyl-2-Pentanone	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
cis-1,3-Dichloropropene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Toluene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
trans-1,3-Dichloropropene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,1,2-Trichloroethane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,3-Dichloropropane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Tetrachloroethene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Dibromochloromethane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,2-Dibromoethane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Chlorobenzene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Ethylbenzene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
m,p-Xylenes	ND	ug/Kg	9.6	0.96	274076	09/17/21	09/17/21	RAO
o-Xylene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Styrene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Bromoform	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Isopropylbenzene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,1,2,2-Tetrachloroethane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,2,3-Trichloropropane	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Propylbenzene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Bromobenzene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,3,5-Trimethylbenzene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
2-Chlorotoluene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
4-Chlorotoluene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
tert-Butylbenzene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,2,4-Trimethylbenzene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
sec-Butylbenzene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
para-Isopropyl Toluene	ND	ug/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Para loopropyr roldelle	.,,,,	49/1/9	1.0	0.00	_, 10,0	00/11/E1	33/11/LT	117.0

450596-008 Analyte	Result	Qual (Jnits	RL	DF	Batch	Prepared	Analyzed	Chemist
1,3-Dichlorobenzene	ND	U	ıg/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,4-Dichlorobenzene	ND	U	ıg/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
n-Butylbenzene	ND	U	ıg/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,2-Dichlorobenzene	ND	U	ıg/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,2-Dibromo-3-Chloropropane	ND	U	ıg/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,2,4-Trichlorobenzene	ND	U	ıg/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Hexachlorobutadiene	ND	U	ıg/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Naphthalene	ND	U	ıg/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
1,2,3-Trichlorobenzene	ND	U	ıg/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Xylene (total)	ND	U	ıg/Kg	4.8	0.96	274076	09/17/21	09/17/21	RAO
Surrogates				Limits					
Dibromofluoromethane	97%	%	6REC	70-145	0.96	274076	09/17/21	09/17/21	RAO
1,2-Dichloroethane-d4	99%	%	6REC	70-145	0.96	274076	09/17/21	09/17/21	RAO
Toluene-d8	100%	%	6REC	70-145	0.96	274076	09/17/21	09/17/21	RAO
Bromofluorobenzene	97%	%	6REC	70-145	0.96	274076	09/17/21	09/17/21	RAO

DO Diluted Out
ND Not Detected

Type: Blank Lab ID: QC943977 Batch: 274017
Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

QC943977 Analyte	Result	Qual Units	RL	Prepared	Analyzed
3-Chloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	09/16/21	09/16/21
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	09/16/21	09/16/21
Freon 12	ND	ug/Kg	5.0	09/16/21	09/16/21
Chloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Vinyl Chloride	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromomethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Chloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Trichlorofluoromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Acetone	ND	ug/Kg	100	09/16/21	09/16/21
Freon 113	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1-Dichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
Methylene Chloride	ND	ug/Kg	5.0	09/16/21	09/16/21
MTBE	ND	ug/Kg	5.0	09/16/21	09/16/21
trans-1,2-Dichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1-Dichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
2-Butanone	ND	ug/Kg	100	09/16/21	09/16/21
cis-1,2-Dichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
2,2-Dichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Chloroform	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromochloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,1-Trichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1-Dichloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
Carbon Tetrachloride	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Benzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Trichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromodichloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Dibromomethane	ND	ug/Kg	5.0	09/16/21	09/16/21
4-Methyl-2-Pentanone	ND	ug/Kg	5.0	09/16/21	09/16/21
cis-1,3-Dichloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
Toluene	ND	ug/Kg	5.0	09/16/21	09/16/21
trans-1,3-Dichloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,2-Trichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,3-Dichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Tetrachloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
Dibromochloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dibromoethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Chlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Ethylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21

QC943977 Analyte	Result	Qual Units	RL	Prepared	Analyzed
m,p-Xylenes	ND	ug/Kg	10	09/16/21	09/16/21
o-Xylene	ND	ug/Kg	5.0	09/16/21	09/16/21
Styrene	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromoform	ND	ug/Kg	5.0	09/16/21	09/16/21
Isopropylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,3-Trichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Propylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
2-Chlorotoluene	ND	ug/Kg	5.0	09/16/21	09/16/21
4-Chlorotoluene	ND	ug/Kg	5.0	09/16/21	09/16/21
tert-Butylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
sec-Butylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
para-Isopropyl Toluene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,3-Dichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,4-Dichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
n-Butylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Hexachlorobutadiene	ND	ug/Kg	5.0	09/16/21	09/16/21
Naphthalene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Xylene (total)	ND	ug/Kg	5.0	09/16/21	09/16/21
Surrogates			Limits		
Dibromofluoromethane	98%	%REC	70-130	09/16/21	09/16/21
1,2-Dichloroethane-d4	102%	%REC	70-145	09/16/21	09/16/21
Toluene-d8	101%	%REC	70-145	09/16/21	09/16/21
Bromofluorobenzene	95%	%REC	70-145	09/16/21	09/16/21

Type: Lab Control Sample Lab ID: QC943978 Batch: 274017

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

QC943978 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	53.07	50.00	ug/Kg	106%	70-131
MTBE	55.39	50.00	ug/Kg	111%	69-130
Benzene	51.96	50.00	ug/Kg	104%	70-130
Trichloroethene	47.37	50.00	ug/Kg	95%	70-130
Toluene	53.05	50.00	ug/Kg	106%	70-130
Chlorobenzene	51.22	50.00	ug/Kg	102%	70-130
Surrogates					
Dibromofluoromethane	50.06	50.00	ug/Kg	100%	70-130
1,2-Dichloroethane-d4	48.95	50.00	ug/Kg	98%	70-145
Toluene-d8	50.64	50.00	ug/Kg	101%	70-145
Bromofluorobenzene	50.03	50.00	ug/Kg	100%	70-145

Type: Lab Control Sample Duplicate Lab ID: QC943979 Batch: 274017

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

							RPD
Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim
48.99	50.00	ug/Kg	98%		70-131	8	33
50.83	50.00	ug/Kg	102%		69-130	9	30
46.42	50.00	ug/Kg	93%		70-130	11	30
41.73	50.00	ug/Kg	83%		70-130	13	30
46.20	50.00	ug/Kg	92%		70-130	14	30
45.71	50.00	ug/Kg	91%		70-130	11	30
49.98	50.00	ug/Kg	100%		70-130		
48.78	50.00	ug/Kg	98%		70-145		
50.29	50.00	ug/Kg	101%		70-145		
47.89	50.00	ug/Kg	96%		70-145		
	48.99 50.83 46.42 41.73 46.20 45.71 49.98 48.78 50.29	48.99 50.00 50.83 50.00 46.42 50.00 41.73 50.00 46.20 50.00 45.71 50.00 49.98 50.00 48.78 50.00 50.29 50.00	48.99 50.00 ug/Kg 50.83 50.00 ug/Kg 46.42 50.00 ug/Kg 41.73 50.00 ug/Kg 46.20 50.00 ug/Kg 45.71 50.00 ug/Kg 49.98 50.00 ug/Kg 48.78 50.00 ug/Kg 50.29 50.00 ug/Kg	48.99 50.00 ug/Kg 98% 50.83 50.00 ug/Kg 102% 46.42 50.00 ug/Kg 93% 41.73 50.00 ug/Kg 83% 46.20 50.00 ug/Kg 92% 45.71 50.00 ug/Kg 91% 49.98 50.00 ug/Kg 100% 48.78 50.00 ug/Kg 98% 50.29 50.00 ug/Kg 101%	48.99 50.00 ug/Kg 98% 50.83 50.00 ug/Kg 102% 46.42 50.00 ug/Kg 93% 41.73 50.00 ug/Kg 83% 46.20 50.00 ug/Kg 92% 45.71 50.00 ug/Kg 91% 49.98 50.00 ug/Kg 100% 48.78 50.00 ug/Kg 98% 50.29 50.00 ug/Kg 101%	48.99 50.00 ug/Kg 98% 70-131 50.83 50.00 ug/Kg 102% 69-130 46.42 50.00 ug/Kg 93% 70-130 41.73 50.00 ug/Kg 83% 70-130 46.20 50.00 ug/Kg 92% 70-130 45.71 50.00 ug/Kg 91% 70-130 49.98 50.00 ug/Kg 100% 70-130 48.78 50.00 ug/Kg 98% 70-145 50.29 50.00 ug/Kg 101% 70-145	48.99 50.00 ug/Kg 98% 70-131 8 50.83 50.00 ug/Kg 102% 69-130 9 46.42 50.00 ug/Kg 93% 70-130 11 41.73 50.00 ug/Kg 83% 70-130 13 46.20 50.00 ug/Kg 92% 70-130 14 45.71 50.00 ug/Kg 91% 70-130 11 49.98 50.00 ug/Kg 100% 70-130 48.78 50.00 ug/Kg 98% 70-145 50.29 50.00 ug/Kg 101% 70-145

Type: Blank Lab ID: QC943980 Batch: 274017

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

QC943980 Analyte	Result	Qual Units	RL	Prepared	Analyzed
3-Chloropropene	ND	ug/Kg	250	09/16/21	09/16/21
cis-1,4-Dichloro-2-butene	ND	ug/Kg	250	09/16/21	09/16/21
trans-1,4-Dichloro-2-butene	ND	ug/Kg	250	09/16/21	09/16/21
Freon 12	ND	ug/Kg	250	09/16/21	09/16/21
Chloromethane	ND	ug/Kg	250	09/16/21	09/16/21
Vinyl Chloride	ND	ug/Kg	250	09/16/21	09/16/21
Bromomethane	ND	ug/Kg	250	09/16/21	09/16/21
Chloroethane	ND	ug/Kg	250	09/16/21	09/16/21
Trichlorofluoromethane	ND	ug/Kg	250	09/16/21	09/16/21
Acetone	ND	ug/Kg	5,000	09/16/21	09/16/21
Freon 113	ND	ug/Kg	250	09/16/21	09/16/21
1,1-Dichloroethene	ND	ug/Kg	250	09/16/21	09/16/21
Methylene Chloride	ND	ug/Kg	250	09/16/21	09/16/21
MTBE	ND	ug/Kg	250	09/16/21	09/16/21
trans-1,2-Dichloroethene	ND	ug/Kg	250	09/16/21	09/16/21
1,1-Dichloroethane	ND	ug/Kg	250	09/16/21	09/16/21
2-Butanone	ND	ug/Kg	5,000	09/16/21	09/16/21
cis-1,2-Dichloroethene	ND	ug/Kg	250	09/16/21	09/16/21
2,2-Dichloropropane	ND	ug/Kg	250	09/16/21	09/16/21
Chloroform	ND	ug/Kg	250	09/16/21	09/16/21
Bromochloromethane	ND	ug/Kg	250	09/16/21	09/16/21
1,1,1-Trichloroethane	ND	ug/Kg	250	09/16/21	09/16/21
1,1-Dichloropropene	ND	ug/Kg	250	09/16/21	09/16/21
Carbon Tetrachloride	ND	ug/Kg	250	09/16/21	09/16/21
1,2-Dichloroethane	ND	ug/Kg	250	09/16/21	09/16/21
Benzene	ND	ug/Kg	250	09/16/21	09/16/21
Trichloroethene	ND	ug/Kg	250	09/16/21	09/16/21
1,2-Dichloropropane	ND	ug/Kg	250	09/16/21	09/16/21
Bromodichloromethane	ND	ug/Kg	250	09/16/21	09/16/21
Dibromomethane	ND	ug/Kg	250	09/16/21	09/16/21
4-Methyl-2-Pentanone	ND	ug/Kg	250	09/16/21	09/16/21
cis-1,3-Dichloropropene	ND	ug/Kg	250	09/16/21	09/16/21
Toluene	ND	ug/Kg	250	09/16/21	09/16/21
trans-1,3-Dichloropropene	ND	ug/Kg	250	09/16/21	09/16/21
1,1,2-Trichloroethane	ND	ug/Kg	250	09/16/21	09/16/21
1,3-Dichloropropane	ND	ug/Kg	250	09/16/21	09/16/21
Tetrachloroethene	ND	ug/Kg	250	09/16/21	09/16/21
Dibromochloromethane	ND	ug/Kg	250	09/16/21	09/16/21
1,2-Dibromoethane	ND	ug/Kg	250	09/16/21	09/16/21
Chlorobenzene	ND	ug/Kg	250	09/16/21	09/16/21
1,1,1,2-Tetrachloroethane	ND	ug/Kg	250	09/16/21	09/16/21
Ethylbenzene	ND	ug/Kg	250	09/16/21	09/16/21

QC943980 Analyte	Result	Qual Units	RL	Prepared	Analyzed
m,p-Xylenes	ND	ug/Kg	500	09/16/21	09/16/21
o-Xylene	ND	ug/Kg	250	09/16/21	09/16/21
Styrene	ND	ug/Kg	250	09/16/21	09/16/21
Bromoform	ND	ug/Kg	250	09/16/21	09/16/21
Isopropylbenzene	ND	ug/Kg	250	09/16/21	09/16/21
1,1,2,2-Tetrachloroethane	ND	ug/Kg	250	09/16/21	09/16/21
1,2,3-Trichloropropane	ND	ug/Kg	250	09/16/21	09/16/21
Propylbenzene	ND	ug/Kg	250	09/16/21	09/16/21
Bromobenzene	ND	ug/Kg	250	09/16/21	09/16/21
1,3,5-Trimethylbenzene	ND	ug/Kg	250	09/16/21	09/16/21
2-Chlorotoluene	ND	ug/Kg	250	09/16/21	09/16/21
4-Chlorotoluene	ND	ug/Kg	250	09/16/21	09/16/21
tert-Butylbenzene	ND	ug/Kg	250	09/16/21	09/16/21
1,2,4-Trimethylbenzene	ND	ug/Kg	250	09/16/21	09/16/21
sec-Butylbenzene	ND	ug/Kg	250	09/16/21	09/16/21
para-Isopropyl Toluene	ND	ug/Kg	250	09/16/21	09/16/21
1,3-Dichlorobenzene	ND	ug/Kg	250	09/16/21	09/16/21
1,4-Dichlorobenzene	ND	ug/Kg	250	09/16/21	09/16/21
n-Butylbenzene	ND	ug/Kg	250	09/16/21	09/16/21
1,2-Dichlorobenzene	ND	ug/Kg	250	09/16/21	09/16/21
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	250	09/16/21	09/16/21
1,2,4-Trichlorobenzene	ND	ug/Kg	250	09/16/21	09/16/21
Hexachlorobutadiene	ND	ug/Kg	250	09/16/21	09/16/21
Naphthalene	ND	ug/Kg	250	09/16/21	09/16/21
1,2,3-Trichlorobenzene	ND	ug/Kg	250	09/16/21	09/16/21
Xylene (total)	ND	ug/Kg	250	09/16/21	09/16/21
Surrogates			Limits		
Dibromofluoromethane	93%	%REC	70-130	09/16/21	09/16/21
1,2-Dichloroethane-d4	99%	%REC	70-145	09/16/21	09/16/21
Toluene-d8	101%	%REC	70-145	09/16/21	09/16/21
Bromofluorobenzene	97%	%REC	70-145	09/16/21	09/16/21

Type: Blank Lab ID: QC944086 Batch: 274063

Matrix: Miscell. Method: EPA 6010B Prep Method: EPA 3050B

QC944086 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Antimony	ND		mg/Kg	3.0	09/16/21	09/21/21
Arsenic	ND		mg/Kg	1.0	09/16/21	09/21/21
Barium	ND		mg/Kg	1.0	09/16/21	09/21/21
Beryllium	ND		mg/Kg	0.50	09/16/21	09/21/21
Cadmium	ND		mg/Kg	0.50	09/16/21	09/21/21
Chromium	ND		mg/Kg	1.0	09/16/21	09/21/21
Cobalt	ND		mg/Kg	0.50	09/16/21	09/21/21
Copper	ND		mg/Kg	1.0	09/16/21	09/21/21
Lead	ND		mg/Kg	1.0	09/16/21	09/21/21
Molybdenum	ND		mg/Kg	1.0	09/16/21	09/21/21
Nickel	ND		mg/Kg	1.0	09/16/21	09/21/21
Selenium	ND		mg/Kg	3.0	09/16/21	09/21/21
Silver	ND		mg/Kg	0.50	09/16/21	09/21/21
Thallium	ND		mg/Kg	3.0	09/16/21	09/21/21
Vanadium	ND		mg/Kg	1.0	09/16/21	09/21/21
Zinc	ND		mg/Kg	5.0	09/16/21	09/21/21

Type: Lab Control Sample Lab ID: QC944087 Batch: 274063

Matrix: Miscell. Method: EPA 6010B Prep Method: EPA 3050B

QC944087 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	99.42	100.0	mg/Kg	99%	80-120
Arsenic	95.38	100.0	mg/Kg	95%	80-120
Barium	98.08	100.0	mg/Kg	98%	80-120
Beryllium	95.11	100.0	mg/Kg	95%	80-120
Cadmium	93.59	100.0	mg/Kg	94%	80-120
Chromium	92.80	100.0	mg/Kg	93%	80-120
Cobalt	97.89	100.0	mg/Kg	98%	80-120
Copper	91.81	100.0	mg/Kg	92%	80-120
Lead	97.63	100.0	mg/Kg	98%	80-120
Molybdenum	98.79	100.0	mg/Kg	99%	80-120
Nickel	97.99	100.0	mg/Kg	98%	80-120
Selenium	83.92	100.0	mg/Kg	84%	80-120
Silver	43.59	50.00	mg/Kg	87%	80-120
Thallium	101.4	100.0	mg/Kg	101%	80-120
Vanadium	96.03	100.0	mg/Kg	96%	80-120
Zinc	101.4	100.0	mg/Kg	101%	80-120

Type: Matrix Spike Lab ID: QC944088 Batch: 274063

Matrix (Source ID): Soil (450593-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample						
QC944088 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	37.32	ND	92.59	mg/Kg	40%	*	75-125	0.93
Arsenic	101.3	3.112	92.59	mg/Kg	106%		75-125	0.93
Barium	188.1	113.2	92.59	mg/Kg	81%		75-125	0.93
Beryllium	93.54	0.5298	92.59	mg/Kg	100%		75-125	0.93
Cadmium	95.24	ND	92.59	mg/Kg	103%		75-125	0.93
Chromium	113.9	24.22	92.59	mg/Kg	97%		75-125	0.93
Cobalt	100.1	8.946	92.59	mg/Kg	98%		75-125	0.93
Copper	107.6	14.54	92.59	mg/Kg	101%		75-125	0.93
Lead	93.85	5.844	92.59	mg/Kg	95%		75-125	0.93
Molybdenum	95.07	ND	92.59	mg/Kg	103%		75-125	0.93
Nickel	106.4	16.09	92.59	mg/Kg	98%		75-125	0.93
Selenium	86.02	ND	92.59	mg/Kg	93%		75-125	0.93
Silver	44.05	ND	46.30	mg/Kg	95%		75-125	0.93
Thallium	91.35	ND	92.59	mg/Kg	99%		75-125	0.93
Vanadium	140.0	43.86	92.59	mg/Kg	104%		75-125	0.93
Zinc	135.6	57.91	92.59	mg/Kg	84%		75-125	0.93

Type: Matrix Spike Duplicate Lab ID: QC944089 Batch: 274063

Matrix (Source ID): Soil (450593-001) Method: EPA 6010B Prep Method: EPA 3050B

		Source Sample							RPD	
QC944089 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	38.85	ND	99.01	mg/Kg	39%	*	75-125	3	41	0.99
Arsenic	106.4	3.112	99.01	mg/Kg	104%		75-125	2	35	0.99
Barium	288.6	113.2	99.01	mg/Kg	177%	*	75-125	39*	20	0.99
Beryllium	98.87	0.5298	99.01	mg/Kg	99%		75-125	1	20	0.99
Cadmium	99.34	ND	99.01	mg/Kg	100%		75-125	2	20	0.99
Chromium	120.7	24.22	99.01	mg/Kg	97%		75-125	0	20	0.99
Cobalt	105.4	8.946	99.01	mg/Kg	97%		75-125	1	20	0.99
Copper	113.6	14.54	99.01	mg/Kg	100%		75-125	0	20	0.99
Lead	98.98	5.844	99.01	mg/Kg	94%		75-125	1	20	0.99
Molybdenum	99.19	ND	99.01	mg/Kg	100%		75-125	2	20	0.99
Nickel	112.2	16.09	99.01	mg/Kg	97%		75-125	0	20	0.99
Selenium	89.81	ND	99.01	mg/Kg	91%		75-125	2	20	0.99
Silver	46.13	ND	49.50	mg/Kg	93%		75-125	2	20	0.99
Thallium	95.04	ND	99.01	mg/Kg	96%		75-125	3	20	0.99
Vanadium	150.7	43.86	99.01	mg/Kg	108%		75-125	3	20	0.99
Zinc	146.7	57.91	99.01	mg/Kg	90%		75-125	4	20	0.99

Type:	Blank	Lab ID:	QC944121	Batch:	274073
Matrix:	Soil M	Method:	EPA 8015M	Prep Method:	EPA 3580

QC944121 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
GRO C6-C10	ND		mg/Kg	10	09/16/21	09/17/21
DRO C10-C28	ND		mg/Kg	10	09/16/21	09/17/21
ORO C28-C44	ND		mg/Kg	20	09/16/21	09/17/21
Surrogates				Limits		
n-Triacontane	95%		%REC	70-130	09/16/21	09/17/21

Type: Lab Control Sample Lab ID: QC944122 Batch: 274073

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580

QC944122 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	244.2	250.0	mg/Kg	98%	76-122
Surrogates					
n-Triacontane	9.937	10.00	mg/Kg	99%	70-130

Type: Matrix Spike Lab ID: QC944123 Batch: 274073

Matrix (Source ID): Soil (450596-003) Method: EPA 8015M Prep Method: EPA 3580

Source Sample

QC944123 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Diesel C10-C28	3,869	4422	248.8	mg/Kg	-222%	NM	62-126	20
Surrogates								
n-Triacontane	14.66		9.950	mg/Kg		DO	70-130	20

Type: Matrix Spike Duplicate Lab ID: QC944124 Batch: 274073

Matrix (Source ID): Soil (450596-003) Method: EPA 8015M Prep Method: EPA 3580

Source

		Sample							RPD	
QC944124 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Diesel C10-C28	2,426	4422	250.0	mg/Kg	-798%	NM	62-126	46*	35	20
Surrogates										
n-Triacontane	13.95		10.00	mg/Kg		DO	70-130			20

Type: Blank Lab ID: QC944133 Batch: 274076
Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

QC944133 Analyte	Result	Qual Units	RL	Prepared	Analyzed
3-Chloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
cis-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	09/16/21	09/16/21
trans-1,4-Dichloro-2-butene	ND	ug/Kg	5.0	09/16/21	09/16/21
Freon 12	ND	ug/Kg	5.0	09/16/21	09/16/21
Chloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Vinyl Chloride	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromomethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Chloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Trichlorofluoromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Acetone	ND	ug/Kg	100	09/16/21	09/16/21
Freon 113	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1-Dichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
Methylene Chloride	ND	ug/Kg	5.0	09/16/21	09/16/21
MTBE	ND	ug/Kg	5.0	09/16/21	09/16/21
trans-1,2-Dichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1-Dichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
2-Butanone	ND	ug/Kg	100	09/16/21	09/16/21
cis-1,2-Dichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
2,2-Dichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Chloroform	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromochloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,1-Trichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1-Dichloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
Carbon Tetrachloride	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Benzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Trichloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromodichloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Dibromomethane	ND	ug/Kg	5.0	09/16/21	09/16/21
4-Methyl-2-Pentanone	ND	ug/Kg	5.0	09/16/21	09/16/21
cis-1,3-Dichloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
Toluene	ND	ug/Kg	5.0	09/16/21	09/16/21
trans-1,3-Dichloropropene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,2-Trichloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,3-Dichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Tetrachloroethene	ND	ug/Kg	5.0	09/16/21	09/16/21
Dibromochloromethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dibromoethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Chlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
Ethylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21

QC944133 Analyte	Result	Qual Units	RL	Prepared	Analyzed
m,p-Xylenes	ND	ug/Kg	10	09/16/21	09/16/21
o-Xylene	ND	ug/Kg	5.0	09/16/21	09/16/21
Styrene	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromoform	ND	ug/Kg	5.0	09/16/21	09/16/21
Isopropylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,3-Trichloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
Propylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Bromobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
2-Chlorotoluene	ND	ug/Kg	5.0	09/16/21	09/16/21
4-Chlorotoluene	ND	ug/Kg	5.0	09/16/21	09/16/21
tert-Butylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
sec-Butylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
para-Isopropyl Toluene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,3-Dichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,4-Dichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
n-Butylbenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Hexachlorobutadiene	ND	ug/Kg	5.0	09/16/21	09/16/21
Naphthalene	ND	ug/Kg	5.0	09/16/21	09/16/21
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	09/16/21	09/16/21
Xylene (total)	ND	ug/Kg	5.0	09/16/21	09/16/21
Surrogates			Limits		
Dibromofluoromethane	96%	%REC	70-130	09/16/21	09/16/21
1,2-Dichloroethane-d4	104%	%REC	70-145	09/16/21	09/16/21
Toluene-d8	103%	%REC	70-145	09/16/21	09/16/21
Bromofluorobenzene	96%	%REC	70-145	09/16/21	09/16/21

Type: Lab Control Sample	Lab ID: QC944134	Batch: 274076
Matrix: Soil	Method: EPA 8260B	Prep Method: EPA 5035

QC944134 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	52.68	50.00	ug/Kg	105%	70-131
MTBE	57.25	50.00	ug/Kg	115%	69-130
Benzene	49.96	50.00	ug/Kg	100%	70-130
Trichloroethene	50.31	50.00	ug/Kg	101%	70-130
Toluene	53.41	50.00	ug/Kg	107%	70-130
Chlorobenzene	52.11	50.00	ug/Kg	104%	70-130
Surrogates					
Dibromofluoromethane	48.41	50.00	ug/Kg	97%	70-130
1,2-Dichloroethane-d4	49.88	50.00	ug/Kg	100%	70-145
Toluene-d8	52.59	50.00	ug/Kg	105%	70-145
Bromofluorobenzene	50.65	50.00	ug/Kg	101%	70-145

Type: Lab Control Sample Duplicate	Lab ID: QC944135	Batch: 274076
Matrix: Soil	Method: EPA 8260B	Prep Method: EPA 5035

								RPD
QC944135 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim
1,1-Dichloroethene	47.62	50.00	ug/Kg	95%		70-131	10	33
MTBE	51.91	50.00	ug/Kg	104%		69-130	10	30
Benzene	46.64	50.00	ug/Kg	93%		70-130	7	30
Trichloroethene	43.70	50.00	ug/Kg	87%		70-130	14	30
Toluene	48.45	50.00	ug/Kg	97%		70-130	10	30
Chlorobenzene	47.38	50.00	ug/Kg	95%		70-130	10	30
Surrogates								
Dibromofluoromethane	49.13	50.00	ug/Kg	98%		70-130		
1,2-Dichloroethane-d4	49.16	50.00	ug/Kg	98%		70-145		
Toluene-d8	51.69	50.00	ug/Kg	103%		70-145		
Bromofluorobenzene	49.34	50.00	ug/Kg	99%		70-145		

Type: Blank Lab ID: QC944231 Batch: 274112

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC944231 Analyte	Result Qua		Units	RL	Prepared	Analyzed
Mercury	ND		mg/Kg	0.14	09/16/21	09/17/21

Type: Lab Control Sample Lab ID: QC944232 Batch: 274112

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC944232 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Mercury	0.8546	0.8333	mg/Kg	103%	80-120

Туре:	Matrix Spike	Lab ID:	QC944233	Batch:	274112
Matrix (Source ID):	Soil (450593-001)	Method:	EPA 7471A	Prep Method:	METHOD

Source

		Sample						
QC944233 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Mercury	0.9426	ND	0.9259	mg/Kg	102%		75-125	1.1

Type:	Matrix Spike Duplicate	Lab ID:	QC944234	Batch:	274112
Matrix (Source ID):	Soil (450593-001)	Method:	EPA 7471A	Prep Method:	METHOD

Source

Sample									RPD	
QC944234 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Mercury	0.9009	ND	0.8772	mg/Kg	103%		75-125	1	20	1.1

Type:	Blank	Lab ID:	QC944514	Batch:	274199
Matrix:	Miscell.	Method:	EPA 7471A	Prep Method:	METHOD

QC944514 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Mercury	ND		mg/Kg	0.14	09/17/21	09/20/21

Type: Lab Control Sample	Lab ID: QC944515	Batch: 274199
Matrix: Miscell.	Method: EPA 7471A	Prep Method: METHOD

QC944515 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Mercury	0.8495	0.8333	mg/Kg	102%	80-120

Type:	Matrix Spike	Lab ID:	QC944516	Batch:	274199
Matrix (Source ID):	Soil (450602-001)	Method:	EPA 7471A	Prep Method:	METHOD

		Source						
		Sample						
QC944516 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Mercury	0.8465	ND	0.8621	ma/Ka	98%		75-125	

Type: Matrix Spike Duplicate	Lab ID: QC944517	Batch: 274199
Matrix (Source ID): Soil (450602-001)	Method: EPA 7471A	Prep Method: METHOD

		Source Sample							RPD	
QC944517 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Mercury	0.8704	ND	0.8772	mg/Kg	99%		75-125	1	20	1.1

Type:	Blank	Lab ID:	QC945145	Batch:	274420
Matrix:	Soil	Method:	EPA 8015M	Prep Method:	EPA 3580

QC945145 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
GRO C6-C10	ND		mg/Kg	10	09/22/21	09/23/21
DRO C10-C28	ND		mg/Kg	10	09/22/21	09/23/21
ORO C28-C44	ND		mg/Kg	20	09/22/21	09/23/21
Surrogates				Limits		
n-Triacontane	91%		%REC	70-130	09/22/21	09/23/21

Type: Lab Control Sample Lab ID: QC945146 Batch: 274420 Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580

QC945146 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	258.6	250.0	mg/Kg	103%	76-122
Surrogates					
n-Triacontane	8.689	10.00	mg/Kg	87%	70-130

Type: Matrix Spike Lab ID: QC945147 Batch: 274420 Matrix (Source ID): Soil (450839-006) Method: EPA 8015M Prep Method: EPA 3580

Source Sample

QC945147 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Diesel C10-C28	217.0	ND	250.0	mg/Kg	87%		62-126	1
Surrogates								
n-Triacontane	6.643		10.00	mg/Kg	66%	*	70-130	1

Type: Matrix Spike Duplicate Lab ID: QC945148 Batch: 274420 Matrix (Source ID): Soil (450839-006) Method: EPA 8015M Prep Method: EPA 3580

Source

		Sample							RPD	
QC945148 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Diesel C10-C28	246.6	ND	250.0	mg/Kg	99%		62-126	13	35	1
Surrogates										
n-Triacontane	7.266		10.00	mg/Kg	73%		70-130			1

Value is outside QC limits

DO Diluted Out

ND Not Detected

NM Not Meaningful

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 450592

Report Level: II

Report Date: 09/20/2021

Analytical Report *prepared for:*

Mike Van Fleet Converse Consultants 717 S. Myrtle Ave. Monrovia, CA 91016

Location: Artevel Phase II 21-16-121-02

Authorized for release by:

Jim Lin, Service Center Manager

Jim.lin@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105, CDC ELITE Member

Sample Summary

Mike Van Fleet Lab Job #: 450592

Converse Consultants Location: Artevel Phase II 21-16-121-02

717 S. Myrtle Ave.

Date Received: 09/15/21

Monrovia, CA 91016

Sample ID	Lab ID	Collected	Matrix
AG-1-0.5	450592-001	09/15/21 12:40	Soil
AG-1-2	450592-002	09/15/21 12:42	Soil
AG-2-0.5	450592-003	09/15/21 12:56	Soil
AG-2-2	450592-004	09/15/21 12:58	Soil
AG-3-0.5	450592-005	09/15/21 13:15	Soil
AG-3-2	450592-006	09/15/21 13:18	Soil
AG-4-0.5	450592-007	09/15/21 13:36	Soil
AG-4-2	450592-008	09/15/21 13:40	Soil
AG-5-0.5	450592-009	09/15/21 13:50	Soil
AG-5-2	450592-010	09/15/21 13:53	Soil

Case Narrative

Converse Consultants 717 S. Myrtle Ave.

Monrovia, CA 91016

Mike Van Fleet

Lab Job Number: 450592

Location: Artevel Phase II 21-16-121-02

Date Received: 09/15/21

This data package contains sample and QC results for ten soil samples, requested for the above referenced project on 09/15/21. The samples were received cold and intact.

Pesticides (EPA 8081A):

Low recovery was observed for endrin in the MS of AG-3-0.5 (lab # 450592-005); the LCS was within limits. High RPD was observed for endrin and endrin ketone in the MS/MSD of AG-3-0.5 (lab # 450592-005); these analytes were not detected at or above the RL in the associated samples. A number of samples were diluted due to the dark color of the sample extracts. No other analytical problems were encountered.

Metals (EPA 6010B):

No analytical problems were encountered.

								י אווים בייים וווים לו מיזון אל מתנמון בייים ווסובר וויון		
			Lab No:	1/259/2	`	Standard:		5 Day:	3 Day:	
	ALYT		Page:	o l	_	2 Day:		1 Day:	Custom TAT:	
<>> Sele	<> Select a Laboratory >>> #N/A Borbley Aut (Overage)	he Gray		trix: A = Air DW = Drinkin ure Product	A = Air S = Soil/Solid Drinking Wate SD = Sed roduct SEA = Sea Water		Preservative $1 = Na2S2O3 2 = HCI $ $4 = H2SO4 5 = NaOH$	Preservatives: $_2O_3$ 2 = HCl 3 = HNO ₃ $_4$ 5 = NaOH 6 = Other	Sample Receipt Temp:	pt Temp
	#N/A		SW = Swab	T = Tissue	WP = Wipe 0 =	0 = Other			(lab use only)	'niy)
CUSTOMER INFORMATION	RMATION	PROJ	PROJECT INFORMATION	1ATION	,	Analysis Request	est	Test Instru	Test Instructions / Comments	ents
Company: Converg	Consultants IN	Name:	Artivel	Phase 11	E					
Report To: Michael		Number:	1-91-12	20-121	ก					
Email: invan Lee	150 J	- C 6 91 a			D')					
Address: 717 S. M.	with Aug	S:	Evelul 2	& schools A	18					
Morrovier	5		Ontamis	14 977	. ଦନ୍ଧ					
Phone: (2017日3	-1200	Global ID:			2					
Fax: 626 - 930.	-1212	Sampled By:			~ 3					
Sample ID	Sampling Date	Sampling Time	Matrix	Container No. / Size	21A 920					
1 146-1-0.5	9115/21	12:40	ડ	sleeve Lee	√ √ √					
2 AC-1-2		27:21	_							
3 16-2-0-5		12.56			シ					
4 BG-2-2		12:58	<u> </u>		ノン					
5 AG-3-0.5		1:15			>					
6 12-3-2		81:1			>					
7 AG-4-0.5		1:36			>					
8 AC-4-2		1:40			>					
- 5-		1:50			>					
10 16-5-2	>	1:83	<u></u>	シ シ	>					
	Signature		Print	Print Name	Ü	Company / Title	itle	, D	Date / Time	
¹ Relinquished By:	I W	\ \	usnar With	Hinace	Converse		DN36/12	51V6 Sp~	121 14	47
¹ Received By:	MM /	12 /	is papici	in or		EA (91		9/15/2((64	7
² Relinquished By:	Λ		-							
² Received By:										
³ Relinquished By:										
					_					

SAMPLE ACCEPTANCE CHECKLIST

Section 1				The state of the s
Client: Converse Consultants	Project:			
Date Received: 9/15/21	Sampler's Name Present:	√Yes	No	
Section 2				
Sample(s) received in a cooler? Yes, How many? 1	NO (skip section 2)		e Temp (°C) (No Cooler)	
Sample Temp (°C), One from each cooler: #1: 8.6		#4:	(NO COOIEI)	
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accept			for sample:	s collected
the same day as sample receipt to have a higher tempera	ture as long as there is evidence that c	ooling has beg	un.)	
Shipping Information:				
Section 3				
Was the cooler packed with: ✓ Ice ☐ Ice Packs	Bubble Wrap Styr	ofoam		
Paper None	Other			
Cooler Temp (°C): #1: <u>3.2</u> #2:	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		√	NO	IV/A
Are sample IDs present?		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Are sampling dates & times present?		1		
Is a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?		1		
Are custody seals present?			1	
If custody seals are present, were they intact?				1
Are all samples sealed in plastic bags? (Recommended f	or Microbiology samples)	1		
Did all samples arrive intact? If no, indicate in Section 4		1		·
Did all bottle labels agree with COC? (ID, dates and time	s)	1		
Were the samples collected in the correct containers for	the required tests?	√		
Are the containers labeled with the correct present	/atives?			1
Is there headspace in the VOA vials greater than 5-6 mm	in diameter?			√
Was a sufficient amount of sample submitted for the rec	quested tests?	√		
Section 5 Explanations/Comments				
Section 5 Explanations/Comments				İ
Section 6	_			
For discrepancies, how was the Project Manager notified				
	Email (email sent to	/on):	/	
Project Manager's response:				
. ^				
<u> </u>				
(VIIM)				
Completed By:	_Date: 915 21			
		-		

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209
www.enthalpy.com/socal
Sample Acceptance Checklist – Rev 4, 8/8/2017

Mike Van Fleet Converse Consultants 717 S. Myrtle Ave. Monrovia, CA 91016

Lab Job #: 450592 Location: Artevel Phase II 21-16-121-02 Date Received: 09/15/21

Sample ID: AG-1-0.5 Lab ID: 450592-001 Collected: 09/15/21 12:40

450592-001 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemis
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	1.0	mg/Kg	1.0	1	274065	09/16/21	09/17/21	KLN
Method: EPA 8081A Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
beta-BHC	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
gamma-BHC	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
delta-BHC	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Heptachlor	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Aldrin	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Heptachlor epoxide	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Endosulfan I	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Dieldrin	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
4,4'-DDE	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Endrin	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Endosulfan II	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Endosulfan sulfate	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
4,4'-DDD	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Endrin aldehyde	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Endrin ketone	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
4,4'-DDT	ND	ug/Kg	5.0	1	274027	09/17/21	09/16/21	MTS
Methoxychlor	ND	ug/Kg	10	1	274027	09/17/21	09/16/21	MTS
Toxaphene	ND	ug/Kg	100	1	274027	09/17/21	09/16/21	MTS
Chlordane (Technical)	ND	ug/Kg	50	1	274027	09/17/21	09/16/21	MTS
Surrogates			Limits					
TCMX	56%	%REC	23-120	1	274027	09/17/21	09/16/21	MTS
Decachlorobiphenyl	58%	%REC	24-120	1	274027	09/17/21	09/16/21	MTS

Sample ID: AG-1-2 Lab ID: 450592-002 Collected: 09/15/21 12:42

450592-002 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	1.1	mg/Kg	0.99	0.99	274065	09/16/21	09/17/21	KLN
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
beta-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
delta-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Heptachlor	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Aldrin	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Dieldrin	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
4,4'-DDE	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endrin	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
4,4'-DDT	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Methoxychlor	ND	ug/Kg	50	5	274027	09/16/21	09/16/21	MTS
Toxaphene	ND	ug/Kg	500	5	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND	ug/Kg	250	5	274027	09/16/21	09/16/21	MTS
Surrogates			Limits					
TCMX	66%	%REC	23-120	5	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl	67%	%REC	24-120	5	274027	09/16/21	09/16/21	MTS

Sample ID: AG-2-0.5 Lab ID: 450592-003 Collected: 09/15/21 12:56

450592-003 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	5.8	mg/Kg	1.0	1	274065	09/16/21	09/17/21	KLN
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
beta-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
delta-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Heptachlor	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Aldrin	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Dieldrin	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
4,4'-DDE	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endrin	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
4,4'-DDT	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Methoxychlor	ND	ug/Kg	50	5	274027	09/16/21	09/16/21	MTS
Toxaphene	ND	ug/Kg	500	5	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND	ug/Kg	250	5	274027	09/16/21	09/16/21	MTS
Surrogates			Limits					
TCMX	83%	%REC	23-120	5	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl	83%	%REC	24-120	5	274027	09/16/21	09/16/21	MTS

Sample ID: AG-2-2 Lab ID: 450592-004 Collected: 09/15/21 12:58

450592-004 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	6.8	mg/Kg	1.0	1	274065	09/16/21	09/17/21	KLN
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
beta-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
delta-BHC	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Heptachlor	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Aldrin	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Dieldrin	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
4,4'-DDE	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endrin	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
4,4'-DDT	ND	ug/Kg	25	5	274027	09/16/21	09/16/21	MTS
Methoxychlor	ND	ug/Kg	50	5	274027	09/16/21	09/16/21	MTS
Toxaphene	ND	ug/Kg	500	5	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND	ug/Kg	250	5	274027	09/16/21	09/16/21	MTS
Surrogates			Limits					
TCMX	77%	%REC	23-120	5	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl	74%	%REC	24-120	5	274027	09/16/21	09/16/21	MTS

Sample ID: AG-3-0.5 Lab ID: 450592-005 Collected: 09/15/21 13:15

450592-005 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	2.5	mg/K	0.95	0.95	274065	09/16/21	09/17/21	KLN
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
beta-BHC	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
delta-BHC	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Aldrin	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Dieldrin	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDE	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDT	ND	ug/Ko	5.0	1	274027	09/16/21	09/16/21	MTS
Methoxychlor	ND	ug/Ko	10	1	274027	09/16/21	09/16/21	MTS
Toxaphene	ND	ug/Kg	100	1	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND	ug/Kg	50	1	274027	09/16/21	09/16/21	MTS
Surrogates			Limits					
TCMX	60%	%RE0	23-120	1	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl	60%	%RE0	24-120	1	274027	09/16/21	09/16/21	MTS

Sample ID: AG-3-2 Lab ID: 450592-006 Collected: 09/15/21 13:18

450592-006 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	4.6	mg/Kg	1.0	1	274065	09/16/21	09/17/21	KLN
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
beta-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
delta-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Aldrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Dieldrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDE	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDT	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Methoxychlor	ND	ug/Kg	10	1	274027	09/16/21	09/16/21	MTS
Toxaphene	ND	ug/Kg	100	1	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND	ug/Kg	50	1	274027	09/16/21	09/16/21	MTS
Surrogates			Limits					
TCMX	56%	%REC	23-120	1	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl	57%	%REC	24-120	1	274027	09/16/21	09/16/21	MTS

Sample ID: AG-4-0.5 Lab ID: 450592-007 Collected: 09/15/21 13:36

450592-007 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Arsenic	2.6		mg/Kg	0.93	0.93	274065	09/16/21	09/17/21	KLN
Method: EPA 8081A									
Prep Method: EPA 3546									
alpha-BHC	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
beta-BHC	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
delta-BHC	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Heptachlor	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Aldrin	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Dieldrin	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
4,4'-DDE	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Endrin	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
4,4'-DDT	ND		ug/Kg	50	10	274027	09/16/21	09/16/21	MTS
Methoxychlor	ND		ug/Kg	100	10	274027	09/16/21	09/16/21	MTS
Toxaphene	ND		ug/Kg	1,000	10	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND		ug/Kg	500	10	274027	09/16/21	09/16/21	MTS
Surrogates				Limits					
TCMX		DO	%REC	23-120	10	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl		DO	%REC	24-120	10	274027	09/16/21	09/16/21	MTS

Sample ID: AG-4-2 Lab ID: 450592-008 Collected: 09/15/21 13:40

450592-008 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								
Prep Method: EPA 3050B								
Arsenic	3.1	mg/Kg	0.94	0.94	274065	09/16/21	09/17/21	KLN
Method: EPA 8081A								
Prep Method: EPA 3546								
alpha-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
beta-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
delta-BHC	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Aldrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Dieldrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDE	5.9	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDT	ND	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Methoxychlor	ND	ug/Kg	10	1	274027	09/16/21	09/16/21	MTS
Toxaphene	ND	ug/Kg	100	1	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND	ug/Kg	50	1	274027	09/16/21	09/16/21	MTS
Surrogates			Limits					
TCMX	60%	%REC	23-120	1	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl	69%	%REC	24-120	1	274027	09/16/21	09/16/21	MTS

Sample ID: AG-5-0.5 Lab ID: 450592-009 Collected: 09/15/21 13:50

450592-009 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Arsenic	3.1		mg/Kg	1.0	1	274065	09/16/21	09/17/21	KLN
Method: EPA 8081A									
Prep Method: EPA 3546									
alpha-BHC	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
beta-BHC	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
delta-BHC	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Aldrin	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Dieldrin	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDE	58		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDT	17	#	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Methoxychlor	ND		ug/Kg	10	1	274027	09/16/21	09/16/21	MTS
Toxaphene	ND		ug/Kg	100	1	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND		ug/Kg	50	1	274027	09/16/21	09/16/21	MTS
Surrogates				Limits					
TCMX	58%		%REC	23-120	1	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl	57%		%REC	24-120	1	274027	09/16/21	09/16/21	MTS

Sample ID: AG-5-2 Lab ID: 450592-010 Collected: 09/15/21 13:53

450592-010 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B									
Prep Method: EPA 3050B									
Arsenic	2.4		mg/Kg	1.0	1	274065	09/16/21	09/17/21	KLN
Method: EPA 8081A									
Prep Method: EPA 3546									
alpha-BHC	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
beta-BHC	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
gamma-BHC	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
delta-BHC	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Aldrin	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Heptachlor epoxide	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan I	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Dieldrin	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDE	410		ug/Kg	50	10	274027	09/16/21	09/17/21	TRN
Endrin	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan II	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endosulfan sulfate	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDD	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin aldehyde	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Endrin ketone	ND		ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
4,4'-DDT	31	#	ug/Kg	5.0	1	274027	09/16/21	09/16/21	MTS
Methoxychlor	ND		ug/Kg	10	1	274027	09/16/21	09/16/21	MTS
Toxaphene	ND		ug/Kg	100	1	274027	09/16/21	09/16/21	MTS
Chlordane (Technical)	ND		ug/Kg	50	1	274027	09/16/21	09/16/21	MTS
Surrogates				Limits					
TCMX	71%		%REC	23-120	1	274027	09/16/21	09/16/21	MTS
Decachlorobiphenyl	72%		%REC	24-120	1	274027	09/16/21	09/16/21	MTS

[#] CCV drift outside limits; average CCV drift within limits per method requirements

DO Diluted Out

ND Not Detected

Type: Blank Lab ID: QC944004 Batch: 274027

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC944004 Analyte	Result	Qual Units	RL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.0	09/16/21	09/16/21
beta-BHC	ND	ug/Kg	5.0	09/16/21	09/16/21
gamma-BHC	ND	ug/Kg	5.0	09/16/21	09/16/21
delta-BHC	ND	ug/Kg	5.0	09/16/21	09/16/21
Heptachlor	ND	ug/Kg	5.0	09/16/21	09/16/21
Aldrin	ND	ug/Kg	5.0	09/16/21	09/16/21
Heptachlor epoxide	ND	ug/Kg	5.0	09/16/21	09/16/21
Endosulfan I	ND	ug/Kg	5.0	09/16/21	09/16/21
Dieldrin	ND	ug/Kg	5.0	09/16/21	09/16/21
4,4'-DDE	ND	ug/Kg	5.0	09/16/21	09/16/21
Endrin	ND	ug/Kg	5.0	09/16/21	09/16/21
Endosulfan II	ND	ug/Kg	5.0	09/16/21	09/16/21
Endosulfan sulfate	ND	ug/Kg	5.0	09/16/21	09/16/21
4,4'-DDD	ND	ug/Kg	5.0	09/16/21	09/16/21
Endrin aldehyde	ND	ug/Kg	5.0	09/16/21	09/16/21
Endrin ketone	ND	ug/Kg	5.0	09/16/21	09/16/21
4,4'-DDT	ND	ug/Kg	5.0	09/16/21	09/16/21
Methoxychlor	ND	ug/Kg	10	09/16/21	09/16/21
Toxaphene	ND	ug/Kg	100	09/16/21	09/16/21
Chlordane (Technical)	ND	ug/Kg	50	09/16/21	09/16/21
Surrogates			Limits		
ТСМХ	62%	%REC	23-120	09/16/21	09/16/21
Decachlorobiphenyl	67%	%REC	24-120	09/16/21	09/16/21
-					

Type: Lab Control Sample Lab ID: QC944005 Batch: 274027

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC944005 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
alpha-BHC	37.23	50.00	ug/Kg	74%		22-129
beta-BHC	39.00	50.00	ug/Kg	78%		28-125
gamma-BHC	36.70	50.00	ug/Kg	73%		22-128
delta-BHC	36.51	50.00	ug/Kg	73%		24-131
Heptachlor	36.86	50.00	ug/Kg	74%		18-124
Aldrin	33.63	50.00	ug/Kg	67%		23-120
Heptachlor epoxide	33.48	50.00	ug/Kg	67%		26-120
Endosulfan I	36.74	50.00	ug/Kg	73%		25-126
Dieldrin	35.97	50.00	ug/Kg	72%		23-124
4,4'-DDE	33.78	50.00	ug/Kg	68%		28-121
Endrin	25.71	50.00	ug/Kg	51%	#	25-127
Endosulfan II	36.31	50.00	ug/Kg	73%		29-121
Endosulfan sulfate	40.07	50.00	ug/Kg	80%		30-121
4,4'-DDD	33.64	50.00	ug/Kg	67%		26-120
Endrin aldehyde	29.12	50.00	ug/Kg	58%		10-120
Endrin ketone	39.94	50.00	ug/Kg	80%		28-125
4,4'-DDT	36.01	50.00	ug/Kg	72%	#	22-125
Methoxychlor	34.43	50.00	ug/Kg	69%	#	28-130
Surrogates						
TCMX	35.21	50.00	ug/Kg	70%		23-120
Decachlorobiphenyl	35.35	50.00	ug/Kg	71%		24-120

Type: Matrix Spike Lab ID: QC944006 Batch: 274027

Matrix (Source ID): Soil (450592-005) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC944006 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	34.95	ND	50.00	ug/Kg	70%		46-120	1
beta-BHC	33.04	ND	50.00	ug/Kg	66%		41-120	1
gamma-BHC	33.32	ND	50.00	ug/Kg	67%		41-120	1
delta-BHC	31.60	ND	50.00	ug/Kg	63%		38-123	1
Heptachlor	32.74	ND	50.00	ug/Kg	65%		39-120	1
Aldrin	29.77	ND	50.00	ug/Kg	60%		34-120	1
Heptachlor epoxide	30.02	ND	50.00	ug/Kg	60%		43-120	1
Endosulfan I	32.36	ND	50.00	ug/Kg	65%		45-120	1
Dieldrin	29.23	ND	50.00	ug/Kg	58%		45-120	1
4,4'-DDE	32.42	ND	50.00	ug/Kg	65%		34-120	1
Endrin	3.058	ND	50.00	ug/Kg	6%	#,*	40-120	1
Endosulfan II	29.55	ND	50.00	ug/Kg	59%		41-120	1
Endosulfan sulfate	31.21	ND	50.00	ug/Kg	62%		42-120	1
4,4'-DDD	30.53	ND	50.00	ug/Kg	61%		41-120	1
Endrin aldehyde	26.39	ND	50.00	ug/Kg	53%		30-120	1
Endrin ketone	46.56	ND	50.00	ug/Kg	93%		45-120	1
4,4'-DDT	32.47	ND	50.00	ug/Kg	65%	#	35-127	1
Methoxychlor	27.74	ND	50.00	ug/Kg	55%	#	42-136	1
Surrogates								
TCMX	28.56		50.00	ug/Kg	57%		23-120	1
Decachlorobiphenyl	28.43		50.00	ug/Kg	57%		24-120	1

Type: Matrix Spike Duplicate Lab ID: QC944007 Batch: 274027

Matrix (Source ID): Soil (450592-005) Method: EPA 8081A Prep Method: EPA 3546

		Source							DDD	
QC944007 Analyte	Result	Sample Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim	DF
alpha-BHC	38.11	ND	50.00	ug/Kg	76%		46-120	9	30	1
beta-BHC	37.25	ND	50.00	ug/Kg	74%		41-120	12	30	1
gamma-BHC	36.98	ND	50.00	ug/Kg	74%		41-120	10	30	1
delta-BHC	36.13	ND	50.00	ug/Kg	72%		38-123	13	30	1
Heptachlor	35.34	ND	50.00	ug/Kg	71%		39-120	8	30	1
Aldrin	33.17	ND	50.00	ug/Kg	66%		34-120	11	30	1
Heptachlor epoxide	32.58	ND	50.00	ug/Kg	65%		43-120	8	30	1
Endosulfan I	35.81	ND	50.00	ug/Kg	72%		45-120	10	30	1
Dieldrin	35.03	ND	50.00	ug/Kg	70%		45-120	18	30	1
4,4'-DDE	35.02	ND	50.00	ug/Kg	70%		34-120	8	30	1
Endrin	34.84	ND	50.00	ug/Kg	70%	#	40-120	168*	30	1
Endosulfan II	34.18	ND	50.00	ug/Kg	68%		41-120	15	30	1
Endosulfan sulfate	34.25	ND	50.00	ug/Kg	68%		42-120	9	30	1
4,4'-DDD	31.84	ND	50.00	ug/Kg	64%		41-120	4	30	1
Endrin aldehyde	25.33	ND	50.00	ug/Kg	51%		30-120	4	30	1
Endrin ketone	33.74	ND	50.00	ug/Kg	67%		45-120	32*	30	1
4,4'-DDT	35.79	ND	50.00	ug/Kg	72%	#	35-127	10	30	1
Methoxychlor	30.01	ND	50.00	ug/Kg	60%	#	42-136	8	30	1
Surrogates										
TCMX	34.22		50.00	ug/Kg	68%		23-120			1
Decachlorobiphenyl	31.45		50.00	ug/Kg	63%		24-120			1

Type: Blank Lab ID: QC944092 Batch: 274065

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC944092 Analyte	Result	Qual	Units	RL	Prepared	Analyzed
Arsenic	ND		mg/Kg	1.0	09/16/21	09/16/21

Type: Lab Control Sample Lab ID: QC944093 Batch: 274065

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC944093 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Arsenic	103.6	100.0	mg/Kg	104%	80-120

Type: Matrix Spike Lab ID: QC944094 Batch: 274065

Matrix (Source ID): Soil (450652-001) Method: EPA 6010B Prep Method: EPA 3050B

Source Sample

QC944094 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Arsenic	96.14	1.149	91.74	mg/Kg	104%		75-125	0.92

Type: Matrix Spike Duplicate Lab ID: QC944095 Batch: 274065

Matrix (Source ID): Soil (450652-001) Method: EPA 6010B Prep Method: EPA 3050B

Source Sample RPD QC944095 Analyte Result Result Units Recovery Qual Limits **RPD** Lim DF Spiked Arsenic 102.5 1.149 95.24 106% 75-125 3 35 0.95 mg/Kg

[#] CCV drift outside limits; average CCV drift within limits per method requirements

Value is outside QC limits

ND Not Detected