Euclid Mixed Use Specific Plan

Final Environmental Impact Report

SCH No. 2023020281

Prepared for:

Edmelynne V. Hutter, Senior Planner
City of Ontario
303 East "B" Street
Ontario, CA 91761

Prepared by:

Kimley-Horn and Associates, Inc. 3801 University Avenue, Suite 300 Riverside, CA 92501

4.1 DEIR Distribution Package

Table of Contents

Section	on 1: Introduction	
1.1	Introduction1	-1
1.2	Organization of the Final EIR1	-2
1.3	CEQA Requirements for a Final EIR1	-2
1.4	Clarifications, Amplifications and Modifications to the Draft EIR1	-3
Section	on 2: Comments and Responses to Draft EIR	
2.1	Introduction to Comments and Responses2	-1
	Comment Letter L1 – South Coast Air Quality Management District2	-3
	Responses to Comment Letter L12	-11
	Comment Letter L2 – City of Chino	-23
	Responses to Comment Letter L22	-29
	Comment Letter O1 –Golden State Environmental Justice Alliance2	-33
	Responses to Comment Letter O12	-81
	Comment Letter O2 - Western States Regional Council of Carpenters2	-101
	Response to Comment Letter O22	-369
	Comment Letter O3 - Western States Regional Council of Carpenters2	-373
Section 2.1 Section 3.1 3.2	Response to Comment Letter O32	-375
Section	on 3.0: Errata to the Draft EIR	
3.1	Introduction to the Errata3	.0-1
3.2	Changes to the Draft EIR	.0-2
Section	on 4.0: FINAL EIR APPENDICES	

This page intentionally left blank.

Section 1.0 Introduction

1.1 INTRODUCTION

The Final Environmental Impact Report (Final EIR) for the Euclid Mixed Use Specific Plan Project has been prepared in accordance with the California Environmental Quality Act (CEQA), and CEQA Guidelines. CEQA Guidelines Section 15132 indicates that the contents of a Final EIR shall consist of:

- (a) Environmental Impact Reports shall contain the information outlined in this article, but the format of the document may be varied. Each element must be covered, and when these elements are not separated into distinct sections, the document shall state where in the document each element is discussed.
- (b) The EIR may be prepared as a separate document, as part of a general plan, or as part of a project report. If prepared as a part of the project report, it must still contain one separate and distinguishable section providing either analysis of all the subjects required in an EIR or, as a minimum, a table showing where each of the subjects is discussed. When the Lead Agency is a state agency, the EIR shall be included as part of the regular project report if such a report is used in the agency's existing review and budgetary process.
- (c) Draft EIRs shall contain the information required by Sections 15122 through 15131. Final EIRs shall contain the same information and the subjects described in Section 15132.
- (d) No document prepared pursuant to this article that is available for public examination shall include a "trade secret" as defined in Section 6254.7 of the Government Code, information about the location of archaeological sites and sacred lands, or any other information that is subject to the disclosure restrictions of Section 6254 of the Government Code.

The Final EIR includes all of these required components.

In accordance with § 15088 of the State CEQA Guidelines, the City of Ontario (City), as the lead agency for the proposed Project, evaluated comments received on the Draft EIR (State Clearinghouse No. 2023020281) and has prepared responses to the comments received. The preceding Table of Contents and Section 1.0 provides of a list of all persons, organizations, and public agencies commenting on the Draft EIR. Section 2.0 includes the Responses to Comments received on the Draft EIR. It should be noted that responses to comments also result in various editorial clarifications and corrections to the original Draft EIR text. Added or modified text is shown in Section 3.0, Errata, by underlining (example) while deleted text is shown by striking (example). The additional information, corrections, and clarifications are not considered to substantively affect the conclusions within the EIR. This Response to Comments document is part of the Final EIR, which includes the EIR pursuant to § 15132 of the State CEQA Guidelines.

After review and discussion by City staff and the City Planning Commission, responses to comments will be sent to commenting agencies and individuals. This satisfies the requirement of Section 21092.5 of CEQA to send responses to the public agency comments received on the Draft EIR at least 10 days prior to Project approval. This document includes responses to all written and verbal comments received on the Draft EIR.

1.2 ORGANIZATION OF THE FINAL EIR

This Final EIR provides the requisite information required under CEQA and is organized as follows:

- **Section 1.0 Introduction.** This section provides an introduction to the Final EIR, including the requirements under CEQA, the organization of the document, as well as brief summary of the CEQA process activities to date.
- Section 2.0 Response to Comments. This section provides a list of agencies and interested persons commenting on the Draft Subsequent EIR; copies of comment letters received during the public review period, and individual responses to written comments. To facilitate review of the responses, each comment letter has been reproduced and assigned a number. Individual comments have been numbered for each letter and the letter is followed by responses with references to the corresponding comment number.
- Section 3.0 Errata to the Draft EIR. This section details changes to the Draft EIR.
- **Appendix.** This section provides additional content where needed and cross-referenced from the body of the Final EIR.

1.3 CEQA REQUIREMENTS FOR A FINAL EIR

As described in CEQA Guidelines Sections 15088, 15089, 15090 and 15132, the Lead Agency must evaluate comments received on the Draft EIR and prepare written responses and consider the information contained in a Final EIR before approving a project.

CEQA Guidelines Section 15204(a) outlines parameters for submitting comments, and reminds persons and public agencies that the focus of review and comment of Draft EIRs should be:

"...on the sufficiency of the document in identifying and analyzing possible impacts on the environment and ways in which significant effects of the project might be avoided or mitigated. Comments are most helpful when they suggest additional specific alternatives or mitigation measures that would provide better ways to avoid or mitigate the significant environmental effects. At the same time, reviewers should be aware that the adequacy of an EIR is determined in terms of what is reasonably feasible. ...CEQA does not require a lead agency to conduct every test or perform all research, study, and experimentation recommended or demanded by commenters. When responding to comments, lead agencies need only respond to significant environmental issues and do not need to provide all information requested by reviewers, as long as a good faith effort at full disclosure is made in the EIR."

CEQA Guidelines Section 15204(c) further advises:

"Reviewers should explain the basis for their comments, and should submit data or references offering facts, reasonable assumptions based on facts, or expert opinion supported by facts in support of the comments. Pursuant to Section 15064, an effect shall not be considered significant in the absence of substantial evidence."

Section 15204(d) also states:

"Each responsible agency and trustee agency shall focus its comments on environmental information germane to that agency's statutory responsibility."

Section 15204(e) states:

"This section shall not be used to restrict the ability of reviewers to comment on the general adequacy of a document or of the lead agency to reject comments not focused as recommended by this section."

State CEQA Guidelines Section 15088 recommends that where a response to comment makes important changes in the information contained in the text of the Draft EIR, that the Lead Agency either revise the text of the Draft Subsequent EIR or include marginal notes showing that information. The Final Subsequent EIR for the Project has been prepared in accordance with CEQA. CEQA Guidelines Section 15132 indicates that the contents of a Final EIR shall consist of:

- "The Draft EIR or a revision of the draft;
- Comments and recommendations received on the Draft EIR either verbatim or in summary;
- A list of persons, organizations, and public agencies commenting on the Draft EIR;
- The responses of the Lead Agency to significant environmental points raised in the review and consultation process; and
- Any other information added by the Lead Agency."

The City has evaluated comments on environmental issues from persons who reviewed the Draft EIR and has prepared a written response, pursuant to CEQA Guidelines Section 15088(a). Pursuant to CEQA Guidelines Section 15088(b), the City provided written responses to comments to any public agency that commented on the Draft Subsequent EIR, at least ten (10) days prior to the City Council consideration of certifying the EIR as adequate under CEQA. Written responses to comments will also be provided to non-public agency individuals, organizations, and entities that commended on the Draft EIR. In addition, the Final EIR will be made available to the general public at the City's Planning Division office and on the City's website a minimum of 10 days prior to the City Council public hearing.

The Final EIR, along with other relevant information and public testimony at the Planning Commission and City Council public hearings, will be considered by the City's Council.

1.4 CLARIFICATIONS, AMPLIFICATIONS AND MODIFICATIONS TO THE DRAFT EIR

Section 3.0, Errata to the Draft EIR, details the proposed changes to the Draft EIR. In response to public comments, text changes have been made to Draft EIR sections to clarify and amplify the analysis or mitigation measures, and to make insignificant modifications to the Draft EIR. This information does not rise to the level of significant new information as the resulting impact analysis and alternatives considered remain essentially unchanged, and no new or more severe impacts have been identified. These changes

do not warrant Draft EIR recirculation pursuant to California Public Resources Code §21092.1 and CEQA Guidelines §15088.5.

CEQA Guidelines §15088.5 describes when an EIR requires recirculation prior to certification, stating in part:

- "(a) A lead agency is required to recirculate an EIR when significant new information is added to the EIR after public notice is given of the availability of the Draft EIR for public review under Section 15087 but before certification. As used in this section, the term "information" can include changes in the project or environmental setting as well as additional data or other information. New information added to an EIR is not "significant" unless the EIR is changed in a way that deprives the public of a meaningful opportunity to comment upon a substantial adverse environmental effect of the project or a feasible way to mitigate or avoid such an effect (including a feasible project alternative) that the project's proponents have declined to implement. "Significant new information" requiring recirculation include, for example, a disclosure showing that:
 - (1) A new significant environmental impact would result from the project or from a new mitigation measure proposed to be implemented.
 - (2) A substantial increase in the severity of an environmental impact would result unless mitigation measures are adopted that reduce the impact to a level of insignificance.
 - (3) A feasible project alternative or mitigation measure considerably different from others previously analyzed would clearly lessen the environmental impacts of the project, but the project's proponents decline to apply it.
 - (4) The Draft EIR was so fundamentally and basically inadequate and conclusory in nature that meaningful public review and comment were precluded (Mountain Lion Coalition v. Fish and Game Com. (1989) 214 Cal.App.3d 1043).
- (b) Recirculation is not required where the new information added to the EIR merely clarifies or amplifies or makes insignificant modifications in an adequate EIR."

As discussed herein and as elaborated upon in the respective Response to Comments, none of the clarifications or changes made in the Errata reflect a new significant environmental impact, a "substantial increase" in the severity of an environmental impact for which mitigation is not proposed, or a new feasible alternative or mitigation measure that would clearly lessen significant environmental impacts but is not adopted, nor do the Errata reflect a "fundamentally flawed" or "conclusory" Draft EIR. In all cases, as discussed in individual responses to comments, master responses and Draft EIR Errata, these minor clarifications and modifications do not identify new or substantially more severe environmental impacts that the City has not committed to mitigate. Here, the public has not been deprived of a meaningful opportunity to comment upon a substantial adverse environmental effect of the Project or an unadopted feasible Project alternative or mitigation measure. Instead, the information added supports the existing analysis and conclusions, and responds to inquiries made from commenters. Therefore, this Final EIR is not subject to recirculation prior to certification.

Section 2.0 Comments and Responses to Draft EIR

CEQA Guidelines Section 15088(a) states that: "The lead agency shall evaluate comments on environmental issues received from persons who reviewed the Draft EIR and shall prepare a written response. The Lead Agency shall respond to comments that were received during the noticed comment period and any extensions and may respond to late comments." In accordance with these requirements, this section of the Final EIR provides the City of Ontario's responses to each of the comments on the Draft EIR received during the public comment period.

Comment letters and specific comments are given letters and numbers for reference purposes. Where sections of the Draft EIR are excerpted in this document, the sections are shown indented. Changes to the Draft EIR text are shown in underlined text for additions and strikeout for deletions.

The following is a list of agencies and persons that submitted comments on the Draft EIR during the public review period.

2.1 INTRODUCTION TO COMMENTS AND RESPONSES

Comments have been numbered as shown below, with responses to each comment following the respective comment letter.

Letter	Date Received	Organization/Name						
Local								
L1	February 1, 2024	South Coast Air Quality Management District (SCAQMD)						
L2	February 6, 2024	City of Chino						
01	February 5, 2024	Blum, Collins & Ho LLP (Golden State Environmental Justice Alliance)						
02	February 5, 2024	Mitchell M. Tsai (Western States Regional Council of Carpenters [WSRCC])						
О3	February 29, 2024	Mitchell M. Tsai (Western States Regional Council of Carpenters [WSRCC])						

This page intentionally left blank.

Comment Letter L1 - South Coast Air Quality Management District

SENT VIA E-MAIL:

February 1, 2024

EHutter@ontarioca.gov Edmelynne Hunter, Senior Planner City of Ontario 303 East B Street Ontario, California 91761

Draft Environmental Impact Report (Draft EIR) for the Proposed Euclid Mixed Use Specific Plan PSP22-001 (Proposed Project) (SCH No. 2023020281)

The South Coast Air Quality Management District (South Coast AQMD) staff appreciates the opportunity to comment on the above-mentioned document. The City of Ontario is the California Environmental Quality Act (CEQA) Lead Agency for the Proposed Project. To provide context, South Coast AQMD staff has provided a brief summary of the project information and prepared the following comments organized by topic of concern.

South Coast AQMD Staff's Summary of Project Information in the Draft EIR

Based on the Draft EIR, the Proposed Project comprises 18 existing parcels totaling 84.1 acres, ¹ allowing for a business park and mixed-use development.² The Proposed Project would develop up to 1) 290,110 square feet (sf) of commercial retail/office uses, 2) up to 466 residential units, and 3) 1,386,777 sf of business park uses and associated on-site and off-site infrastructure improvements.³ The Proposed Project is anticipated to be developed in two phases within five planning areas (PAs). Phase I would consist of PAs 1, 2A, and 3A with construction of 13 buildings up to 1,473,026 sf (maximum development allowed).⁵ Phase II comprises PAs 2B and 3B with potential future development, as specific development proposals have not yet been identified. Phase I would include 809,217 sf of unrefrigerated warehouse and 191,378 sf of industrial business park, 7 On the other hand, Phase II would consist of 466 dwelling units apartments, 163,000 sf of unrefrigerated warehouse, 10,225 sf of strip mall, 10,000 sf of fast food restaurant with drive-thru, and 10,000 sf of fast food restaurant without drive-thru. 8 Phase I is expected to be constructed in 2024, with an anticipated opening year in 2032.9 After reviewing aerial photographs of the site, South Coast AQMD staff found that the nearest sensitive receptor, an existing residential development, is located within 150 feet west and southeast of the Proposed Project site.

a

Draft EIR. Page 3-1.

² Ibid. Page 3-6.

³ Ibid.

⁴ Ibid.

⁵ Ibid.

⁶ Ibid. Page 3-7.

⁷ Ibid. Page 4.3-20.

⁸ Ibid. Page 4.3-24.

⁹ *Ibid*. Page 3-7.

February 1, 2024

b

C

d

South Coast AQMD Staff's Comments on the Draft EIR

Inconsistency in the Proposed Project's Construction Schedule

As mentioned in Section 3 - Project Description, Phase I of the Proposed Project is expected to start in 2024 and open in 2032. However, Section 4.3 – Air Quality assumes the opening year of Phase I would be 2025. In addition, the buildout of the Proposed Project is anticipated to begin in 2026. The construction and operation schedule information discussed in the Draft EIR should be consistent. Therefore, the correction should be included in the Final EIR.

Potential Overlapped Construction and Operation Analysis

Based on the information discussed in Section 4.3 – Air Quality, Phase I would be open in 2025, while the buildout is expected to begin in 2026. This statement potentially leads to an expectation that Phase II would start to be constructed while Phase I is already in operation. Hence, an overlap period would occur between Phase I operation and Phase II construction prior to the full buildout. Thus, it is recommended that the air quality analysis should include the potential overlap that could occur, analyze the overlapped emissions, compare the overlapped emissions to the operational South Coast AQMD Air Quality Significance Thresholds, and determine the level of significance in the Final EIR. All feasible mitigation measures are needed to reduce the impacts if the results are significant.

Potential of Inappropriate Vehicle Fleet Mixes to Evaluate Proposed Project's Air Quality Impacts from Mobile Sources

The Proposed Project's operational emissions from mobile sources may have been underestimated due to the use of inappropriate vehicle fleet mixes in the Draft EIR. The Proposed Project generates 8,820 daily trips, with 10% being daily truck trips (882 daily truck trips). ¹⁴ According to Appendix II – Traffic Analysis of the Draft EIR, trip generation is estimated using the Trip Generation Manual, 11th Edition. ¹⁵ South Coast AQMD staff believes that the number of trucks assumed in the Draft EIR to serve the proposed industrial uses is too low for warehouse facilities exceeding a million square feet, as the total industrial uses of the Proposed Project is over a million square feet (refer to the Summary section of this letter). For instance, according to the Fontana Truck Trip Generation Study, 20.4% of the total daily vehicle trips from a warehouse greater than 100,000 square feet would consist of trucks. ¹⁶ This study is based on traffic counts from warehouses. Thus, re-evaluating the Proposed Project's air quality impacts, assuming a conservative fleet mix supported by substantial evidence is recommended.

 $\underline{https://tampabayfreight.com/pdfs/Freight\%20Library/Fontana\%20Truck\%20Generation\%20Study.pdf}$

¹⁰ Ibid.

¹¹ Ibid. Page 4.3-14.

¹² Ibid.

¹³ Ibid

¹⁴ Ibid. Table 4-2. Appendix I1 – Traffic Analysis. Page 32.

¹⁵ Ibid. Appendix II - Traffic Analysis. Page 28.

¹⁶ City of Fontana. Truck Trip Generation Study. Available at:

February 1, 2024

e

g

Potential Underestimation of Emissions Due to Imprecise Assumptions for Truck Trip Lengths in Emissions Analysis

The Draft EIR for the Proposed Project states that "all truck trips were assumed to be 33.2 miles, one way." However, it is crucial to note that the Proposed Project site is approximately 55 miles (one-way) from the Ports of Los Angeles or Port of Long Beach. This implies that the air quality analysis might have underestimated the emissions from trucks traveling from the Ports to the Proposed Project site. Revising the analysis in the Draft EIR is essential to rely on more conservative trip lengths designated for Port trips. Customizing these parameters and assumptions based on project-specific data will ensure a more accurate assessment of emissions, accounting for the unique circumstances and logistical realities of the Proposed Project.

Health Rish Assessment (HRA) During Operation

The South Coast AQMD Modeling Guidance for AERMOD¹⁷ is recommended to be used as the guidance for the HRA modeling. South Coast AQMD staff's review of the modeling files noted that industrial buildings were not included in the building downwash option in the AERMOD dispersion model during operation, which resulted in an underestimation of the ground-level pollutant concentrations near the buildings. Thus, the Lead Agency is recommended to re-run the operational HRAs, including the industrial buildings in the building downwash, to analyze groundlevel concentrations more accurately and include the results in the Final EIR.

Emission Reductions from Health Risk Strategies

When certifying an EIR for a project, retain the authority to include any additional information deemed relevant to assessing and mitigating the environmental impacts. South Coast AQMD is concerned about the potential public health impacts of sitting sensitive populations within the proximity of existing air pollution sources (e.g., freeways and railroads). For this reason, prior to approving future development projects, the Lead Agency is recommended to consider the impacts of air pollutants on people who will live in a new project and provide effective mitigation. Additionally, South Coast AQMD suggests that the Lead Agency review and apply the guidance provided in 1) the California Air Resources Board (CARB) Air Quality Land Use and Handbook: A Community Health Perspective, 18 which provides criteria for evaluating and reducing air pollution impacts associated with new projects involving land use decisions; and 2) CARB's technical advisory which contains strategies to reduce air pollution exposure near high-volume roadways.19

Many strategies are available for residential receptors to reduce being exposed to particulate matter, including, but not limited to, HVAC systems equipped with filters rated at a minimum efficiency reporting value (MERV) 13 or higher air filtration capabilities. In some cases, MERV 15 or better is recommended for building design, orientation, location, vegetation barriers,

3

City of Ontario July 2024 2-5

¹⁷ South Coast AQMD Modeling Guidance for AERMOD. Available at: http://www.aqmd.gov/home/air-quality/meteorological-

data/modeling-guidance.

18 California Air Resources Board (CARB), Air Quality Land Use and Handbook: A Community Health Perspective, April 2005. Available at: https://ww2.arb.ca.gov/sites/default/files/2023-05/Land%20Use%20Handbook 0.pdf

⁹ CARB's Strategies to Reduce Air Pollution Exposure Near High-Volume Roadways. Available at: https://ww2.arb.ca.gov/sites/default/files/2017-10/rd_technical_advisory_final.pdf

February 1, 2024

landscaping screening, etc. Enhanced filtration units are capable of reducing exposure. However, enhanced filtration systems have limitations. For example, filters rated MERV 13 or higher are able to screen out greater than or equal to 50% of DPM, 20 but they have no ability to filter out volatile organic compound (VOC) emissions. Also, in a study that South Coast AQMD conducted to investigate filters rated at MERV 13 or better in classrooms, 21,22 a cost burden is expected to be within the range of \$120 to \$240 per year to replace each filter panel. The initial start-up cost could substantially increase if an HVAC system needs to be installed and if standalone filter units are required. Installation costs may vary, including costs for conducting site assessments and obtaining permits and approvals before filters can be installed. Other costs may include filter life monitoring, annual maintenance, and training for conducting maintenance and reporting. In addition, the filters would not have any effect unless the HVAC system is running. Therefore, when in use, the increased energy consumption from each HVAC system should be evaluated in the Draft EIR. While the filters operate 100 percent of the time when the HVAC is in use while the residents are indoors, the environmental analysis does not generally account for the times when the residents are not using their HVAC and instead have their windows or doors open or are moving throughout the common space outdoor areas of the Proposed Project. Furthermore, when used filters are replaced with new filters, emissions associated with trucks delivering the new filters and waste disposal trucks transporting the used filters to disposal sites should be evaluated in the Draft EIR. Therefore, any presumed effectiveness and feasibility of a particular HVAC filter should be carefully evaluated in more detail based on supporting evidence before assuming they will sufficiently alleviate exposure to DPM emissions.

cont.

Additional Recommended Air Quality and Greenhouse Gases Mitigation Measures and Project Design Considerations

CEQA requires that all feasible mitigation measures that go beyond what is required by law be utilized to minimize or eliminate any significant adverse air quality impacts. To further reduce the Proposed Project's air quality impacts, and in addition to Mitigation Measures MM AQ-1 to MM AQ-8²³ and MM GHG-1.²⁴ Although with the mitigation measures discussed in the Draft EIR, the mitigated operational emissions are still significant and unavoidable for VOC and NOx compared to the South Coast AQMD Air Quality Significance Thresholds. Hence, South Coast AQMD staff recommends incorporating additional mitigation measures into the Final EIR.

Mitigation Measures for Operational Air Quality Impacts from Mobile Sources

1) Require zero-emissions (ZE) or near-zero emission (NZE) on-road haul trucks, such as heavy-duty trucks with natural gas engines that meet the CARB's adopted optional NOx emissions standard at 0.02 grams per brake horsepower-hour (g/bhp-hr), if and when feasible.

24 Ibid. Page 4.8-24.

4

h

²⁰ U.S. EPA, "What is a MERV rating?" Available at: https://www.https://www.epa.gov/indoor-air-quality-iaq/what-merv-rating

²¹ South Coast AQMD, Draft Pilot Study of High-Performance Air Filtration For Classroom Applications, October 2009. Available at: https://www.aqmd.gov/docs/default-source/cega/handbook/aqmdpilotstudyfinalreport.pdf

22 International Journal of Indoor Environment and Health, Pilot Study of High-Performance Air Filtration for Classroom

Applications, November 2012. Available at: https://onlinelibrary.wiley.com/doi/10.1111/ina.12013 <a href="https://onlinelibrary.wiley.com/doi/10.111

February 1, 2024

Note: Given the state's clean truck rules and regulations aiming to accelerate the utilization and market penetration of ZE and NZE trucks, such as the Advanced Clean Trucks Rule and the Heavy-duty Low NOx Omnibus Regulation, ZE and NZE trucks will become increasingly more available to use.

- 2) Require a phase-in schedule to incentivize the use of cleaner operating trucks to reduce any significant adverse air quality impacts. Note: South Coast AQMD staff is available to discuss the availability of current and upcoming truck technologies and incentive programs with the Lead Agency.
- 3) At a minimum, require the use of a 2010 model year that meets CARB's 2010 engine emissions standards at 0.01 g/bhp-hr of particulate matter (PM) and 0.20 g/bhp-hr of NOx emissions or newer, cleaner trucks. All heavy-duty haul trucks should meet CARB's lowest optional low-NOx standard starting in 2022. Where appropriate, include environmental analyses to evaluate and identify sufficient electricity and supportive infrastructures in the Energy and Utilities and Service Systems Sections in the CEQA document. Include the requirements in applicable bid documents, purchase orders, and contracts. Operators shall maintain records of all trucks associated with project construction to document that each truck used meets these emission standards and make the records available for inspection. Regular inspections should be conducted by the Lead Agency to the maximum extent feasible to ensure compliance.
- 4) Limit the daily number of trucks allowed at the Proposed Project to levels analyzed in the Final CEQA document. If higher daily truck volumes are anticipated to visit the site, the Lead Agency should commit to re-evaluating the Proposed Project through CEQA prior to allowing this higher activity level.
- 5) Provide electric vehicle (EV) charging stations or, at a minimum, provide electrical infrastructure, and electrical panels should be appropriately sized. Electrical hookups should be provided for truckers to plug in any onboard auxiliary equipment.

Mitigation Measures for Operational Air Quality Impacts from Other Area Sources

- 1) Maximize the use of solar energy by installing solar energy arrays.
- 2) Use light-colored paving and roofing materials.
- 3) Utilize only Energy Star heating, cooling, and lighting devices and appliances.

Design Considerations for Reducing Air Quality and Health Risk Impacts

- 1) Clearly mark truck routes with trailblazer signs so that trucks will not travel next to or near sensitive land uses (e.g., residences, schools, daycare centers, etc.).
- 2) Design the Proposed Project such that truck entrances and exits do not face sensitive receptors and trucks will not travel past sensitive land uses to enter or leave the Proposed Project site.

cont.

5

February 1, 2024

- 3) Design the Proposed Project such that any truck check-in point is inside the Proposed Project site to ensure no trucks are queuing outside.
- 4) Design the Proposed Project to ensure that truck traffic inside the Proposed Project site is as far away as feasible from sensitive receptors.
- 5) Restrict overnight truck parking in sensitive land uses by providing overnight truck parking inside the Proposed Project site.

Lastly, the South Coast AQMD also suggests that the Lead Agency conduct a review of the following references and incorporate additional mitigation measures as applicable to the Proposed Project in the Final EIR:

- 1) State of California Department of Justice: Warehouse Projects: Best Practices and Mitigation Measures to Comply with the California Environmental Quality Act²⁵
- 2) South Coast AQMD 2022 South Coast Air Quality Management Plan, 26 specifically:
 - a. Appendix IV-A South Coast AQMD's Stationary and Mobile Source Control Measures
 - b. Appendix IV-B CARB's Strategy for South Coast
 - c. Appendix IV-C SCAG's Regional Transportation Strategy and Control Measures
- 3) United States Environmental Protection Agency (U.S. EPA): Mobile Source Pollution -Environmental Justice and Transportation²⁷

South Coast AQMD Air Permits and Role as a Responsible Agency

Based on the air quality analysis in the Draft EIR, the Proposed Project would include using generators during operation. Hence, air permits from South Coast AQMD would be required. The Final EIR should include a discussion about the potentially applicable South Coast AQMD rules that may be applicable to the Proposed Project, including but not limited to Rule 201 - Permit to Construct, ²⁸ Rule 203 - Permit to Operate, ²⁹ Rule 401 - Visible Emissions, ³⁰ Rule 402 - cont.

j

6

²⁵ State of California – Department of Justice. Warehouse Projects: Best Practices and Mitigation Measures to Comply with the California Environmental Quality Act. Available at: https://oag.ca.gov/system/files/media/warchouse-best-practices.pdf

²⁶ 2022 South Coast AQMP. Available at: http://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan
²⁷ United States Environmental Protection Agency (U.S. EPA): Mobile Source Pollution - Environmental Justice and

Transportation. Available at: https://www.epa.gov/mobile-source-pollution/environmental-justice-and-transportation
28 South Coast AQMD Rule 201 – Permit to Construct. Available at: https://www.aqmd.gov/docs/default-source/rule

South Coast AQMD Rule 203 – Permit to Operate. Available at: https://www.aqmd.gov/docs/default-source/rule-book/reg-

 $South\ Coast\ AQMD\ Rule\ 401-Visible\ Emissions.\ Available\ at: \underline{https://www.aqmd.gov/docs/default-source/rule-book/rule$ iv/rule-401.pdf

February 1, 2024

Nuisance, 31 Rule 403 – Fugitive Dust, 32 Rule 1110.2 – Emissions from Gaseous and Liquid Fueled Engines, 33 Rule 1166 - VOC Contaminated Soil Excavation, 34 Regulation XIII - New Source Review, 35 Rule 1401 - Air Toxics, 36 Rule 1466 - Control of Particulate Emissions from Soils with Toxic Air Contaminants,³⁷ and Rule 1470 - Requirements for Stationary Diesel Fueled Internal Combustion and Other Compression Ignition Engines.³⁸ It is important to note that when air permits from South Coast AQMD are required, the role of South Coast AQMD would change from a Commenting Agency to a Responsible Agency under CEQA. In addition, if South Coast AQMD is identified as a Responsible Agency, per CEQA Guidelines Sections 15086, the Lead Agency is required to consult with South Coast AQMD.

CEQA Guidelines Section 15096 sets forth specific procedures for a Responsible Agency, including making a decision on the adequacy of the CEQA document for use as part of the process for conducting a review of the Proposed Project and issuing discretionary approvals. Moreover, it is important to note that if a Responsible Agency determines that a CEQA document is not adequate to rely upon for its discretionary approvals, the Responsible Agency must take further actions listed in CEQA Guideline Section 15096(e), which could have the effect of delaying the implementation of the Proposed Project. In its role as CEQA Responsible Agency, the South Coast AQMD is obligated to ensure that the CEQA document prepared for this Proposed Project contains a sufficient project description and analysis to be relied upon in order to issue any discretionary approvals that may be needed for air permits. South Coast AQMD is concerned that the project description and analysis in its current form in the Draft EIR is inadequate to be relied upon for this purpose.

For these reasons, the Draft EIR should be revised to include a discussion about any and all new stationary and portable equipment requiring South Coast AQMD air permits, provide the evaluation of their air quality and greenhouse gas impacts, and identify South Coast AQMD as a Responsible Agency for the Proposed Project as this information will be relied upon as the basis for the permit conditions and emission limits for the air permit(s). Please contact South Coast AQMD's Engineering and Permitting staff at (909) 396-3385 for questions regarding what types of equipment would require air permits. For more general information on permits, please visit South Coast AQMD's webpage at http://www.aqmd.gov/home/permits.

cont.

³¹ South Coast AQMD Rule 402 - Nuisance. Available at: <a href="https://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-iv/rule-iv/rule-book/rule-iv/rule-book/rule-iv

^{402.}pdf
32 South Coast AQMD Rule 403 – Fugitive Dust. Available at: https://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-

^{403.}pdf
33 South Coast AQMD Rule 1110.2 – Emissions from Gaseous and Liquid Fueled Engines, Available at:

http://www.aqmd.gov/docs/default-source/rule-book/reg-xi/r1110_2.pdf

34 South Coast AQMD Rule 1166 – VOC Contaminated Soil Excavation. Available at: https://www.aqmd.gov/docs/defaultsource/rule-book/reg-xi/rule-1166.pdf

South Coast AQMD Regulation XIII - New Source Review. Available at: https://www.agmd.gov/home/rulescompliance/rules/scaqmd-rule-book/regulation-xiii

⁶ South Coast AQMD Rule 1401 - Air Toxics, Available at: https://www.aqmd.gov/docs/default-source/rule-book/reg-xiv/rule-

South Coast AQMD Rule 1466 - Control of Particulate Emissions from Soils with Toxic Air Contaminants. Available at: https://www.aqmd.gov/docs/default-source/rule-book/reg-xiv/rule-1466.pdf

³⁸ South Coast AQMD Rule 1470 – Requirements for Stationary Diesel Fueled Internal Combustion and Other Compression Ignition Engines. Available at: https://www.aqmd.gov/docs/default-source/rule-book/reg-xiv/rule-1470.pdf

February 1, 2024

Conclusion

As set forth in California Public Resources Code Section 21092.5(a) and CEQA Guidelines Section 15088(a-b), the Lead Agency shall evaluate comments from public agencies on the environmental issues and prepare a written response at least 10 days prior to certifying the Final EIR. As such, please provide South Coast AQMD written responses to all comments contained herein at least 10 days prior to the certification of the Final EIR. In addition, as provided by CEQA Guidelines Section 15088(c), if the Lead Agency's position is at variance with recommendations provided in this comment letter, detailed reasons supported by substantial evidence in the record to explain why specific comments and suggestions are not accepted must be provided.

Thank you for the opportunity to provide comments. South Coast AQMD staff is available to work with the Lead Agency to address any air quality questions that may arise from this comment letter. Please contact Danica Nguyen, Air Quality Specialist, at dnguyen1@aqmd.gov should you have any questions.

Sincerely,

Sam Wang

Sam Wang

Program Supervisor, CEQA-IGR

Planning, Rule Development & Implementation

SW:DN SBC240103-01 Control Number k

Responses to Comment Letter L1 - South Coast Air Quality Management District

Response L1-a

Comment is introductory and general in nature. Therefore, no further action needed.

Response L1-b

The Draft EIR evaluated impacts based on, amongst other data, the assumption that "Phase I is expected to start construction in 2024, with an anticipated opening year in 2032," as stated in *Section 3.0: Project Description* of the Draft EIR, page 3-7. It should be noted that specific details regarding development of the parcels in Phase II are not known at this time. The Draft EIR's air quality analysis assumed construction of Phase II would begin subsequent to Phase I construction completion. Actual development would be subject to market conditions. It is not possible to know the specific timing and characteristics of potential future projects occurring in the planning area and, therefore, evaluating potential combined emissions scenarios would be speculative and would not provide meaningful information or analyses.

As such, for purposes of providing a conservative air quality analysis, the operations for buildout of the entire development are anticipated to begin in 2026 (as discussed in *Section 4.3: Air Quality* of the Draft EIR, page 4.3-14). Conducting the air quality modeling in this way is considered conservative as emissions factors would decrease over time as emissions regulations become more stringent and cleaner construction equipment would be more readily available. As construction of Phase II and full buildout operations would occur at a later date than was analyzed in the Draft EIR, the emissions presented are, accordingly, conservative. No correction to the construction schedule or buildout operational dates are needed. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L1-c

The Draft EIR evaluated impacts based on, amongst other data, the assumption that "Phase I is expected to start construction in 2024, with an anticipated opening year in 2032," as stated in **Section 3.0: Project Description** of the Draft EIR, page 3-7. For Phase II, it was assumed that construction would start right after Phase I construction is complete/at the start of Phase I operations and used model defaults as there is no detailed phasing. Thus, the City has analyzed sequential construction of Phase I with Phase II in the Draft EIR.

The commenter's recommendation to combine construction emissions with operational emissions, i.e., an overlap, is not consistent with other South Coast Air Quality Management District (SCAQMD) guidance documents, recommendations, and impact analyses. For example, neither the SCAQMD's CEQA Air Quality Handbook, Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning, or Air Quality Significance Thresholds imply or explicitly recommend combining emissions from distinct construction and operational activities into a single lump sum emissions total. Rather, each of these documents discusses potential sources, mitigation measures, and thresholds of significance for construction and operational emissions separately.

As stated in **Section 3.0: Project Description** of the Draft EIR, page 3-18, Phase II may be developed in several subphases in response to market demands and according to the logical and orderly completion of infrastructure improvements. Additionally, as stated in **Section 4.3: Air Quality** of the Draft EIR,

page 4.3-14, "for purposes of this analysis, construction of Phase I of the Project is not anticipated to overlap with the construction of Phase II of the Project as there are still no proposals for this portion of the Project." Phasing sequencing is subject to change over time to respond to various market and local factors and as such, individual phases may overlap or develop concurrently. Actual development would be subject to market conditions. It is not possible to know the specific timing and characteristics of potential future projects occurring in the planning area and, therefore, evaluating potential combined emissions scenarios would be speculative and would not provide meaningful information or analyses.

Nonetheless, the Final EIR will include the following discussion on impacts from the potential overlapping of Phase I operational activities with Phase II construction activities (refer to Draft EIR *Appendix B* for modeling outputs):

Table 4.3-12a: Emissions from Overlapping Phase I Operation and Phase II Construction

Sources	Pollutants (pounds per day)										
Sources	VOC	NO _X	СО	SO ₂	PM ₁₀	PM _{2.5}					
Unmitigated Emissions											
Phase I Operations (2026) ¹	68.73	191.98	611.85	1.01	23.53	10.07					
Phase II Construction (2026) ²	206.00	31.70	46.90	0.06	21.30	11.40					
Total Unmitigated Overlapping Emissions	274.73	223.68	658.75	1.07	44.83	21.47					
SCAQMD Threshold	55	55	550	150	150	55					
Exceeds Threshold	Yes	Yes	Yes	No	No	No					
Mitigated Emissions											
Phase I Operations (2026) ¹	59.89	145.59	207.35	0.91	21.93	8.64					
Phase II Construction (2026) ²	31.90	14.50	46.90	0.06	21.30	11.40					
Total Mitigated Overlapping Emissions	91.79	160.09	254.25	0.97	43.23	20.04					
SCAQMD Threshold	55	55	550	150	150	55					
Exceeds Threshold	Yes	Yes	No	No	No	No					

^{1.} Refer to Draft EIR Table 4.3-9: Phase I – Maximum Daily Operation Emissions

Note that Phase II construction would occur in 2025 and 2026. This table provides the maximum daily emissions, which would occur in 2026.

As shown in Table 4.3-12a of the Final EIR, Project emissions from the operation of Phase I combined with concurrent maximum day construction emissions of Phase II could result in maximum worst-case unmitigated daily emissions of VOC, NO_X , and CO in excess of applicable thresholds. Overlapping emissions of SO_2 , PM_{10} , and $PM_{2.5}$ would not exceed the applicable thresholds. Implementation of applicable mitigation measures would reduce impacts from CO to below the applicable thresholds and impacts from CO emissions would be reduced to less than significant. Even with implementation of applicable mitigation measures described in the Draft EIR, and as disclosed in the Draft EIR, mitigated emissions of VOC and NO_X would remain in excess of applicable thresholds.

Comparing the results summarized in Table 4.3-12a of the Final EIR, with the total Project buildout (Phase I and Phase II) emissions as reported in Table 4.3-12 in *Section 4.3: Air Quality* of the Draft EIR demonstrates that emissions for all six criteria pollutants studied are less during the overlapping scenario than at Project buildout. As such, Table 4.3-12 in *Section 4.3: Air Quality* of the Draft EIR presents the worst-case maximum daily emissions from the Project (i.e., exceedances of VOC and NO_X regional daily mass emissions thresholds). The Draft EIR identifies all feasible mitigation to reduce construction and

 $^{2. \}qquad \text{Refer to Draft EIR Table 4.3-10: Phase II - Maximum Daily Construction-Related Emissions } \\$

operational impacts. Combining Phase II construction with Phase I operations (i.e., the phases that would potentially overlap) would not result in a new threshold exceedance, would not make additional mitigation feasible, and no new impact would occur. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L1-d

The Draft EIR evaluated air quality impacts based on, amongst other data, trip generation and average vehicle trip distance for passenger vehicle and trucks as provided by Urban Crossroads in *Appendix I: Transportation Reports*, of the Draft EIR. Specifically, the Project vehicle trip generation was obtained from the Project's Traffic Analysis Study (*Appendix I1: Traffic Analysis* of the Draft EIR), which includes 7,938 total daily passenger car vehicle trips and 882 daily truck trips. In order to develop the traffic characteristics of the Project, trip-generation statistics published in the Institute of Transportation Engineers (ITE) Trip Generation Manual (11th Edition, 2021) was used to estimate the trip generation. As discussed below, the City contends the use of the ITE Trip Generation Manual is justified and disagrees with the assertion that the modeling underestimated Project emissions from truck trips.

The commenter's recommendation to utilize other trip generation rates, such as those presented in the City of Fontana's 2003 *Truck Trip Generation Study*, is not consistent with other City guidance documents, recommendations, and impact analyses. The City of Fontana's *2003 Truck Trip Generation Study* is more than 20 years old and therefore, it is not representative of current trucking/industrial industry data, such as those released by other national sources. The latest Institute of ITE Trip Generation Manual (11th Edition, published in 2021) includes truck mix percentages for most of the industrial land use categories including those used for the Project. The ITE provides a mix of passenger cars versus total trucks and is an industry standard/source that is used across the country. The South Coast Air Quality Management District (SCAQMD) has preferred mix of trucks by axle-type for non-cold storage and cold storage warehouse uses. The use of these mixes in the traffic analysis, as was done for the Project, ensures that the traffic operations analysis and forecasts align with other technical studies that rely on the same data, such as air quality. Thus, the ITE Trip Generation Manual is an accepted methodology for estimating trip generation.

The air quality modeling is consistent with the trip generation of fleet assumptions of the traffic analysis, included as *Appendix I* of the Draft EIR. As shown in Table 4-2 of the Euclid Mixed-Use Specific Plan Traffic Analysis (included as *Appendix I* of the Draft EIR), total trucks generated by the truck/trailer parking lot, warehouse, and business park uses (total of 882 trucks) would consist of approximately 34.6 percent of the total 2,548 trips associated with those uses. The commenter miscalculated the truck percentage based on total trips for the entire Project Site, which includes uses that only account for passenger car trips. The remaining passenger car trips shown on Table 4-2 of the Euclid Mixed-Use Specific Plan Traffic Analysis are associated with residential, restaurant, and retail trips and application of Fontana Truck Trip Generation Study to those uses would not be appropriate. As such, the modeled truck fleet mix for applicable Project land uses (generating 882 trucks out of a total of 2,548 trips) is more conservative (34.6 percent) than the 20.4 percent trucks suggested in the comment. Therefore, the comment that the fleet mix assumptions underestimate operational emissions is incorrect. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L1-e

The Air Quality Assessment, provided as *Appendix B* of the Draft EIR, used a truck trip length of 33.2 miles in the emissions modeling based on the California Air Resources Board (CARB) document *Emissions Estimation Methodology for On-Road Diesel-Fueled Heavy-Duty Drayage Trucks at California Ports and Intermodal Rail Yards.* It should be noted that this distance is specific to transloading/local distribution facilities and is the longest (i.e., most conservative) distance identified in the study for the South Coast Air Basin. Shorter distances are identified for other locations such as off-terminal and intermodal facilities. The CARB study used GIS to estimate travel distances. CARB explains that that estimating travel distances to/from the Ports of Los Angeles and Long Beach to distribution and transloading facilities is complicated because there are thousands of facilities and the number of trips to each facility and location of each facility is unknown. Therefore, CARB used the Ports' truck trip origin and destination (O-D) survey data to estimate distribution center travel distances.

The CalEEMod methodology uses average trip lengths, which accounts for some longer trips (e.g., to/from the Ports of Los Angeles and Long Beach or other location) and some shorter trips (e.g., to/from other facilities or warehouses in the area). Goods movement can involve several steps (i.e., origin and destination) between the port and a particular warehouse, intermodal facility, or other facility. Each step would be a separate trip. As such, not all truck trips would originate from the Ports; some trips may be from intermodal facilities, storage warehouses, cross-dock warehouses, distribution centers, retail stores, etc. Truck trips would likely be redistributed from other existing locations. As described above, the CARB truck trip lengths used in the Air Quality Assessment are based on substantial evidence and representative of warehouse truck trips to/from the ports in the South Coast Air Basin (i.e., the region where the Project is located). Therefore, no further revision to the analysis in the Draft EIR is required.

Response L1-f

The City acknowledges that health risk assessment (HRA) modeling does not include the building downwash option (where the potential for pollutants to be trapped in a recirculating pattern near buildings is accounted for) in the AERMOD dispersion model for operations. The purpose of building downwash is to determine if stack discharge might become caught in the turbulent wakes of structures within close proximity. A plume drawn into a turbulent wake is temporarily trapped in a recirculating cavity, increasing ground-level pollutant concentrations near the building than if the building weren't present. The City disagrees that the dispersion modeling must include building downwash. The SCAQMD Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis (August 2003) includes guidance for truck idling, ship hoteling at ports and train idling. Page 6 of said document further describes that volume or area source options (where the movement of sources, such as trucks, within a given area is accounted for) are most appropriate for the diesel particulate matter sources associated with truck idling and movement and that point source treatment is most appropriate for ship activity and train idling emissions where the source of emissions has little to no movement (i.e., ships idling at the port). Additionally, the treatment of downwash in AERMOD is based on the Plume Rise Model Enhancements (PRIME) model which is integrated into AERMOD for point sources (Schulman et al. 2000) only and is therefore only applicable to point and flare

emission source types. In addition, PRIME algorithms have not been updated and the current treatment of downwash does not reflect more recent research and the current understanding of downwash effects.¹

The Draft EIR modeled the mobile sources in the AERMOD dispersion model as line-volume sources consistent with SCAQMD guidance that represent on- and off-site truck movements and idling and is consistent with industry standard analysis. As the building downwash modeling option is applicable to point and flare emissions source types, it is not applicable to line-volume sources that were modeled for the Project.

With regard to emissions from backup generators, tenants of the proposed buildings are not known and it is not possible to know if or where backup generators would be installed. In addition, area sources (which encompass a general area on the site as opposed to a specific location for a point source) assume less dispersion due to a lower release height of pollutants (closer ground level) and lower exit velocity (speed at which pollutants are emitted from the exhaust) compared to a point source with a higher release height and exit velocity. The lower release height and lower exit velocity associated with the area sources assumed in the modeling results in a more conservative analysis in that greater pollutant concentrations near the ground-level (in closer proximity to receptors) released at lower speeds would disperse slower. Therefore, areas sources were modeled to account for backup generators throughout the Project Site to provide a more conservative analysis. The modeling data is available in *Appendix B* of the Draft EIR. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L1-g

Though not required by CEQA, the analysis in the Draft EIR (Section 4.3: Air Quality of the Draft EIR, pages 4.3-32 through 4.3-46, and Appendix B2: Health Risk Assessment Data of the Draft EIR) conservatively analyzed localized impacts from Project operations on future on-site residential receptors. As discussed in **Section 4.3: Air Quality** of the Draft EIR, pages 4.3-32 through 4.3-46, mitigated buildout operations would not result in significant impacts related to localized criteria pollutant emissions (see Tables 4.3-19 and 4.3-20 in Section 4.3: Air Quality of the Draft EIR) or carcinogenic and non-carcinogenic risks (see Tables 4.3-21 and 4.3-22 in Section 4.3: Air Quality of the Draft EIR), at off-site or future on-site residential receptors. Based on California Green Building Standards Code (CALGreen) Section 5.504.5.3 requirements, most residential heating, air conditioning, and ventilation (HVAC) systems are rated for MERV13. The use of filters greater than MERV13 is not required and no presumed effectiveness or feasibility of a particular HVAC filter to filter out DPM or VOC has been accounted for in the analysis. It is noted that maintenance of the HVAC systems including filters would be performed by the building manager to ensure filters are changed regularly and that systems are fully functioning. Additionally, buildings are required to be energy efficient, meeting the strict standards of Title 24 (Part 6 and Part 11), which would offset the HVAC system energy consumption. Therefore, no further action needed. Therefore, no further revision to the analysis in the Draft EIR is required.

City of Ontario July 2024

U.S. EPA, Issues Related to Building Downwash in AERMOD. https://www.epa.gov/sites/default/files/2021-01/documents/downwash_overview_white_paper.pdf.

Response L1-h

The Draft EIR identifies potentially significant levels of emissions during construction and operation of the proposed Project. The Draft EIR also includes a number of Plans, Programs, and Policies, standard conditions, and mitigation measures to reduce impacts from the proposed Project. These Plans, Programs, and Policies are provided within *Section 4.3: Air Quality* of the Draft EIR, pages 4.3-15 through 4.3-16; Regulatory Requirements are included within *Section 4.3: Air Quality* of the Draft EIR, pages 4.3-27 through 4.3-28; and mitigation measures are provided within *Section 4.3: Air Quality* of the Draft EIR, pages 4.3-28 through 4.3-30 and page 4.3-44. The City disagrees that the suggested performance standards must be adopted in the Final EIR, as discussed further below.

The City requires the use of "Super-Compliant" low VOC paints during construction through the implementation of Mitigation Measure (MM) AQ-1. The City designed air quality mitigation measures to require strategies which can reasonably be seen as feasible at the time Project operations are expected to begin. For example, it would not be feasible to require the Project Applicant to use more electric construction equipment than stated in the Draft EIR or zero emissions or near zero emissions heavy-duty trucks because such equipment suitable for project construction are not now nor are they expected to be commercially available to meet the construction needs of the Project within the Project schedule. Specifically, MM AQ-2 through MM AQ-7 have been identified to reduce operational emissions. MM AQ-2 requires that all cargo handling equipment used on a daily basis (yard trucks/hostlers, forklifts, etc.) be electric. MM AQ-3 requires the implementation of a Transportation Demand Management program to reduce single occupant vehicle trips and encourage transit. MM AQ-4 requires the buildings to be designed to accommodate EV infrastructure, and MM AQ-5 prohibits idling when engines are not in use. MM AQ-7 prohibits refrigerated warehouse space/cold storage. MM GHG-1 requires that the Project incorporate project design features to achieve a minimum score of 100 points on the Climate Action Plan Screening Tables. Incorporation of eligible design features such as low-flow water fixtures and renewable energy would result in reduced operational emissions. Additionally, Standard Condition (SC) AQ-9 through SC AQ-11 would provide designated parking to promote the use of alternative fuels and clean fleets, facilitate future installation of EV supply equipment, and limit idling times.

This comment provides a list of recommended additional mitigation measures to reduce the Project's operational VOC and NO_x emissions. The Draft EIR identifies a number of Plans, Programs, and Policies, standard conditions, and mitigation measures to reduce impacts from the proposed Project. These Plans, Programs, and Policies are provided within *Section 4.3: Air Quality* of the Draft EIR, pages 4.3-15 through 4.4-16; Regulatory Requirements are included within *Section 4.3: Air Quality* of the Draft EIR, pages 4.3-27 through 4.3-28; and mitigation measures are provided within *Section 4.3: Air Quality* of the Draft EIR, pages 4.3-28 through 4.3-30 and page 4.3-44. The City disagrees that the suggested additional mitigation measures are necessary and feasible. The applicability and feasibility of each of these proposed measures is discussed below:

Mitigation Measures for Operational Air Quality Impacts from Mobile Sources

Require zero-emissions (ZE) or near-zero emission (NZE) on-road haul trucks.
 The suggested measures contained in the comment related to ZE or NZE vehicles are not feasible to implement, because the availability of vehicles equipped with such technology in the opening

year is speculative. Even with adoption of CARB's Advanced Clean Truck Rule, CARB acknowledges that it will take time for ZE and NZE vehicles to become commercially availability and to penetrate market.

Emissions of motor vehicles are controlled by State and federal standards, and neither the City nor the Project has control over these standards. Federal and State agencies regulate and enforce vehicle emission standards. Trucks accessing the Project site would be subject to the Advanced Clean Truck Regulation, CARB's Mobile Source Strategy, CARB's Sustainable Freight Action Plan, and CARB's Emissions Reduction Plan for Ports and Goods Movement. Additionally, trucks are subject to the Heavy-Duty Low NO_X Omnibus Regulation. As noted in the comment, these regulations are required for all trucks. These suggested mitigation measures are already part of the existing regulatory environment and would not be considered mitigation under CEQA. For example, CARB already regulates truck emissions with the Advanced Clean Truck Regulation, the Mobile Source Strategy (including the low-NO_X engine emissions standard), the Sustainable Freight Action Plan, and the Emissions Reduction Plan for Ports and Goods Movement, among others. As these regulations are already required, they do not represent CEQA mitigation for the Project.

- 2) Require a phase-in schedule to incentivize the use of cleaner operating trucks to reduce any significant adverse air quality impacts.
 - Refer to response L1-h(1), above. As these regulations are already required, they do not represent CEQA mitigation for the Project.
- 3) At a minimum, require the use of a 2010 model year that meets CARB's 2010 engine emissions standards.
 - The CARB Truck and Bus Regulation required trucks to be upgraded to 2010 or new model year engines. The Truck and Bus regulation has been in effect since December 2008 and the final deadline for the last replacement phase of the regulation was January 1, 2023. As this regulation is already required, it does not represent CEQA mitigation for the Project.
- 4) Limit the daily number of trucks allowed at the Proposed Project to levels analyzed in the Final CEQA document.
 - The analysis provided in the Draft EIR is based on a set of realistic, but conservative, assumptions regarding the magnitude of potential activities resulting from the proposed Project, including truck trip estimates. The comment does not provide any substantial evidence that the Proposed Project would exceed this estimate and therefore such an action would not reduce any potentially significant impacts.
- 5) Provide electric vehicle (EV) charging stations or, at a minimum, provide electrical infrastructure, and electrical panels should be appropriately sized. Electrical hookups should be provided for truckers to plug in any onboard auxiliary equipment.

Draft EIR PDF GHG-2 ensures that the tilt-up concrete warehouse buildings shall have rooftops that can support tenant improvements for solar panels (i.e., solar-ready). As discussed in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, page 4.8-37, the Project would comply with the Building Energy Efficiency Standards, the California Green Building Standards Code (CALGreen), and energy efficiency measures implemented by the City's Climate Action Plan (CAP). Consistent with the CAP, the buildings developed under the Project would have rooftops that can support solar panels (i.e., solar-ready) which will comply with solar ready requirements of the Building Energy Efficiency Standards, which would enable future tenants to install a PV system. Further, MM AQ-4 requires electrical conduit for future electric trucks. Therefore, the Project would be consistent with this recommended measure.

Commenter-Recommended Mitigation Measures for Operations Air Quality Impacts from Other Area Sources

1) Maximize the use of solar energy by installing solar energy arrays.

The proposed Project would promote renewable energy sources including passive solar collection, subject to the City of Ontario policies and development regulations, within the Business Park and Mixed-Use Districts. Draft EIR PDF GHG-2 ensures that the tilt-up concrete warehouse buildings shall have rooftops that can support tenant improvements for solar panels (i.e., solar-ready). As discussed in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, page 4.8-37, the Project would comply with the Building Energy Efficiency Standards, the California Green Building Standards Code (CALGreen), and energy efficiency measures implemented by the City's Climate Action Plan (CAP). Consistent with the CAP, the buildings developed under the Project would have rooftops that can support solar panels (i.e., solar-ready) which will comply with solar ready requirements of the Building Energy Efficiency Standards, which would enable future tenants to install a PV system. The residential buildings on-site would be prewired for the future installation of solar collection improvements. Therefore, the Project would be consistent with this recommended measure.

2) Use light-colored paving and roofing materials.

California's Title 24, Part 6 Building Energy Efficiency Standards includes cool roof requirements for new and existing buildings. These requirements are in the following sections of the 2022 Title 24, Part 6 standards:

- Section 10-113(a): (Mandatory Labeling of Roofing Product Reflectance and Emittance)
- Section 10-113(b): (Mandatory Certification)
- Section 110.8(i): (Mandatory Insulation, Roofing Products & Radiant Barriers)
- Section 140.1: (Performance Approach: Energy Budgets [Nonresidential])
- Section 140.2: (Prescriptive Approach [Nonresidential])
- Section 140.3(a)(1): (Prescriptive Requirements for Building Envelopes [Nonresidential])

Therefore, the Project would be consistent with this recommended measure.

3) Utilize only Energy Star heating, cooling, and lighting devices and appliances.

2022 Title 24, Part 6 Building Energy Efficiency Standards includes requirements to meet or exceed Energy Star standards. Therefore, the Project would be consistent with this recommended measure.

Commenter-Recommended Design Considerations

1) Clearly mark truck routes with trailblazer signs.

Draft EIR MM AQ-5 requires the Project to post signs that direct trucks to truck routes and away from sensitive receptors. Therefore, the Project would be consistent with this recommended measure.

2) Design the Proposed Project such that truck entrances and exits are not facing sensitive receptors and trucks will not travel past sensitive land uses to enter or leave the Proposed Project site.

As discussed in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, page 4.8-34, the Project is located in proximity to existing truck routes and freeways. As mentioned, MM AQ-5 requires the Project to post signs that direct trucks to truck routes and away from sensitive receptors, consistent with City requirements that truck traffic to be routed to minimize the impact on sensitive land uses (e.g., access locations, use of traffic control features, signage). Therefore, the Project would be consistent with this recommended measure.

3) Design the Proposed Project such that any truck check-in point is inside the Proposed Project site to ensure no trucks are queuing outside.

As described above, the City has requirements for truck traffic. In addition, **Section 4.8: Greenhouse Gas Emissions** of the Draft EIR, page 4.15-20, states that the "truck/trailer component of the Project is anticipated to provide overflow or excess trailer parking for nearby warehouses and distribution centers." The truck storage lot is anticipated to serve nearby warehouses and distribution facilities that would be seeking to locate overflow truck/trailer storage as close as possible to the primary warehouse or distribution facility. As a result, the trips are expected to be local serving. Therefore, the Project would be consistent with this recommended measure.

- 4) Design the Proposed Project to ensure that truck traffic inside the Proposed Project site is as far away as feasible from sensitive receptors.
 - As described above, the City requires truck traffic to be routed to minimize the impact on sensitive receptors, (e.g., access locations, use of traffic control features, signage). Therefore, the Project would be consistent with this recommended measure.
- 5) Restrict overnight truck parking in sensitive land uses by providing overnight truck parking inside the Proposed Project site.

The Project is required to provide adequate on-site parking in accordance with the City's parking standards. The City requires facilities to provide adequate on-site parking and queuing for trucks/trailers away from sensitive receptors and prohibit commercial truck and/or trailer parking

on the public road right- of-way or adjacent to sensitive receptors. Therefore, the Project would be consistent with this recommended measure.

As discussed above, the City designed six operational air quality mitigation measures and one greenhouse gas (GHG) mitigation measure to require strategies which can reasonably be seen as feasible at the time Project construction and operations are expected to begin. MM AQ-2 through MM AQ-7 have been identified to reduce operational emissions. MM AQ-2 requires that all cargo handling equipment used on a daily basis (yard trucks/hostlers, forklifts, etc.) be electric. MM AQ-3 requires the implementation of a Transportation Demand Management program to reduce single occupant vehicle trips and encourage transit. MM AQ-4 requires the buildings to be designed to accommodate EV infrastructure, and MM AQ-5 prohibits idling when engines are not in use. MM AQ-7 prohibits refrigerated warehouse space/cold storage. Additionally, the applicant must complete and submit a final set of screening tables showing the achievement of the required 100 points prior to issuance of the building permit, as required by MM GHG-1. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L1-i

This comment does not raise any substantive issues regarding the adequacy of the Draft EIR. No further response is necessary. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L1-j

This air quality impact analysis considers construction and operational impacts associated with the Project. Where criteria air pollutant quantification was required, emissions were modeled using the California Emissions Estimator Model (CalEEMod; see *Appendix B1: Air Quality Emissions Model Data* of the Draft EIR). Air quality impacts were assessed according to methodologies recommended by CARB and the SCAQMD. SCAQMD rules considered in the analysis are discussed in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, page 4.3-9 and 4.3-10, and includes Rule 402 (Nuisance), Rule 403 (Fugitive Dust), Rule 431.2 (Sulfur Content of Liquid Fuels), Rule 1113 (Architectural Coatings), and Rule 2305 (Warehouse Indirect Source Rule). Typical construction equipment assumed by CalEEMod includes the use of generators.² In order to provide a conservative analysis, the Draft EIR included emissions associated with backup generators based on general assumptions and associated calculations are included in *Appendix B*. Therefore, the construction and operations emissions estimations conservatively include the use of generators (see *Appendix B1: Air Quality Emissions Model Data* of the Draft EIR, *Section 5.2* Off-Road Equipment of CalEEMod output files).

In addition, MM AQ-2 provides the following guidance, should the City deem generators necessary: "Prior to the issuance of building permits, the City of Ontario Building Department shall confirm that if emergency generators are proposed, the Project applicant shall explore non-diesel options. If non-diesel generators are determined to not be feasible due commercial availability or the energy requirements of the project, the Project applicant shall provide written justification to be approved by the City's Building Department." If stationary equipment, such as generators, is needed, the end user would be required to

City of Ontario July 2024

² California Air Pollution Control Officers Association, 2022. California Emissions Estimator Model (CalEEMod) Version 2022.1 User Guide. https://www.caleemod.com/user-guide.

obtain a permit from the SCAQMD prior to installation. Stationary equipment would be required to implement SCAQMD's Best Available Control Technology (BACT) and comply with applicable SCAQMD Rules, such as Rule 1470 (Requirements for Stationary Diesel-Fueled Internal Combustion and Other Compression Ignition Engines). In order to provide a conservative analysis, the Draft EIR also included emissions associated with backup generators based on general assumptions (see *Section 4.3: Air Quality* of the Draft EIR, page 4.3-19) and the associated calculations are included in *Appendix B1*. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L1-k

The comment is general in nature, summarizing portions of California Public Resources Code and CEQA Guidelines and includes the author's salutation. The City of Ontario intends to fully comply with the requirements of California Public Resources Code Section 21092.5(a) and CEQA Guidelines Section 15088 as requested in the comment. That is, the comment requests that the City comply with CEQA when responding to SCAQMD's comments. As requested, the City's responses to SCAQMD's comments will be sent to the SCAQMD as part of the Final EIR distribution prior to certification of Final EIR. As the comment does not raise any issues with respect to the content and adequacy of the Draft EIR or the Project's environmental effects, no further response is warranted. The comment is included here to provide a complete record of the SCAQMD's letter. The comment will become part of the administrative record and will be considered by the decision-makers. The comment does not raise any CEQA related issues, and no response is therefore warranted. Therefore, no further revision to the analysis in the Draft EIR is required.

This page intentionally left blank.

Comment Letter L2 - City of Chino

EUNICE M. ULLOA Mayor

KAREN C. COMSTOCK

CURTIS BURTON
CHRISTOPHER FLORES
MARC LUCIO
Council Members

a

b

C

d

1

DR. LINDA REICH City Manager

February 6, 2024

Edmelynne V. Hutter, Senior Planner City of Ontario Planning Department 303 East "B" Street Ontario, CA 91764

Re: Notice of Availability of a DEIR: Euclid Mixed Use Specific Plan Draft Environmental Impact Report

Dear Edmelynne,

This letter is in response to the Notice of Availability for an Environmental Impact Report for the Proposed Euclid Mixed Use Specific Plan, made available on December 22, 2023. Thank you for giving the City of Chino the opportunity to review the information and provide comment. The City's comments are outlined below:

Traffic / Transportation

- 1. The Traffic Impact Analysis for the project does not assess impacts likely to occur in the City of Chino. The TIA needs to analyze all intersections along the Edison Avenue / Grand Avenue corridor from SR-71 to Euclid as this is likely to be a route for trucks from and to the project. Passenger vehicle traffic also does not analyze traffic through the City of Chino and needs to be included in the TIA. Chino's TIA guidelines require analysis of any intersection estimated to have a 50 peak hour trip increase to traffic by a project.
- The City of Chino will require coordination of improvements to Euclid Avenue including the modification of traffic signals at Schaefer Avenue, Red Bud Lane, and Edison Avenue. The City of Chino may require conditions of approval related to public improvements on the project to ensure improvements are built in compliance with the Chino General Plan.
- 3. The Air Quality Chapter of the City of Chino General Plan speaks to Distribution centers and warehouses not being located within 1,000 feet of a sensitive receptor, this includes religious facilities, daycare, residential communities, etc (see Attachment). There is currently a daycare facility located at the intersection of Euclid Avenue and Schaefer Avenue, a religious facility with a daycare near the intersections of Euclid Avenue and Edison Avenue and a residential community just across Euclid Avenue south of Schaefer Avenue. Distribution/Warehouse buildings that operate with more than 100 truck trips per day would need to be located outside of these 1,000 feet. What is the proposed daily trip generation of each building and the distance from the buildings from these sensitive receptors? Please provide a plan that shows the distance to the buildings that intend to have greater than 100 truck trips per day.

13220 Central Avenue, Chino, California 91710

Mailing Address: P.O. Box 667, Chino, California 91708-0667

(909) 334-3250 • (909) 334-3720 Fax

Web Site: www.cityofchino.org

City of Ontario July 2024 2-23

е

Public Works

- 1. The notice indicated the project is on 84.1 acres, but the PWQMP seems to only cover 58.6 acres. Additionally, the area is ultimately tributary to Chino's master storm drain Line "I" and the site is recognized as a high potential for trash debris to be conveyed to that facility. To provide a better full capturing of debris, onsite filters and full trash capture devices should be incorporated into WQMP.
- 2. The project site is located within 1,000 feet of Chino's water treatment facility. Dust control and circulation of traffic during construction should be maintained.
- 3. Outdoor trailer parking is proposed in open space zoning. Will this open space be replaced elsewhere?

If you have any questions, please contact Chris Cortez, Assistant Planner, by email at ccortez@cityofchino.org, or by phone at 909-334-3250.

Sincerely

Chris Cortez Assistant Planner

cc: Michael Hitz, AICP, Principal Planner Dennis Ralls, T.E., Transportation Manager Natalie Avila, E.I.T., Associate Engineer

Attachments: Chino General Plan - Air Quality

2

CITY OF CHINO GENERAL PLAN AIR QUALITY ELEMENT

D. Goals, Objectives, Policies, and Actions

See the Open Space and Conservation Element for goals, objectives, policies, and actions related to greenhouse gas emissions and climate change. Also see the Transportation Element for additional goals, objectives, policies, and actions related to reducing emissions associated with vehicle travel.

Goal AQ-1 Preserve and improve air quality in Chino and the region.

Objective AQ-1.1 Improve air quality through land use and transportation planning decisions.

Policies

- P1. The City shall promote land use patterns that reduce the number and length of motor vehicle trips.
- P2. Where development opportunities near shopping areas and transit corridors exist, the City shall prioritize higher-density residential development.
- P3. The City shall encourage employment areas to include a mix of retail support services.
- P4. Design new intersections to function in a manner that reduces air pollutant emissions from stop and start and idling traffic conditions.
- P5. The City shall, to the extent practicable, separate sensitive land uses (schools, senior centers, medical facilities, and residences) from significant sources of air pollutants, toxic air contaminants, or odor emissions.
- P6. The City shall require developers of projects that include sensitive land uses (schools, senior centers, medical facilities, and residences) in proximity to State Route 71 and State Route 60 to prepare a health impact assessment (HIA) to determine the significance of

AQ-19

CITY OF CHINO GENERAL PLAN AIR QUALITY ELEMENT

the impact, and to incorporate project-specific mitigation measures to avoid this risk.

- P7. The City shall promote expansion of employment opportunities within Chino to reduce commuting to areas outside of the City.
- P8. The City shall continue to enforce the vehicle idling restrictions established by the State.
- P9. The City shall prohibit each and every new land use that has the potential to be a source of air pollution from being located closer than the specified minimum distance from any sensitive land use (when measured as a straight line between the points of the new land use and the sensitive land use that are closest to each other):
 - Freeways, urban roads with over 100,000 daily vehicle trips, or rural roads with over 50,000 daily vehicle trips – 500 feet.
 - ◆ Distribution centers, warehouses, and other facilities serving as a distribution point for the transfer of goods with over 100 trucks per day, over 40 trucks with transport refrigeration units per day, or with all such units operating more than 300 hours per week − 1,000 feet.
 - Rail yards or railroads − 1,000 feet.
 - Facilities where crude oil is converted into any petroleum product – 1,000 feet.
 - Chrome platers and other operations using hexavalent chromium – 1,000 feet.
 - Dry cleaners and other operations using perchloroethylene – 500 feet.
 - Gasoline-dispensing facilities with the potential for total throughput equal to 3,600,000 gallons or more per year – 300 feet.

AQ-20

CITY OF CHINO GENERAL PLAN AIR QUALITY ELEMENT

 ◆ Gasoline-dispensing facilities with no potential for total throughput in excess of 3,600,000 gallons per year - 50 feet.

"Sensitive land use" refers to any and all land uses where sensitive receptors are likely to spend time, including, but not limited to schools, schoolyards, parks, playgrounds, daycare facilities, nursing homes, hospitals, religious facilities, and residential communities; "sensitive receptors" refers to children, the elderly, and members of the public with serious health problems affected by air quality; and "new land use" includes the development of undeveloped land, the redevelopment of an existing developed site, or any use that requires a new permit from the City (whether ministerial or discretionary) even if no construction is involved.

P10. The City shall require each and every new land use where any sensitive receptor may be present for any period of time to employ all commercially reasonable design techniques and equipment sufficient to minimize to the maximum extent feasible all potential exposures to air pollution on the site of the use.

Objective AQ-1.2

Actions

- A1. Implement traffic features such as roundabouts or the use of integrated signalization to improve traffic flow and reduce emissions from vehicle idling and stop and start.
- Install LED traffic signals throughout Chino to reduce the City's electricity consumption.
- A3. Utilize the latest energy-efficient technologies for street and parking lot lights that meet City and state standards.
- A4. Establish a local ordinance that exceeds the State vehicle idling restrictions where appropriate, including restrictions for bus layovers, delivery vehicles, trucks at warehouses and distribution facilities, and taxis, particularly when these activities take place close to sen-

AQ-21

This page intentionally left blank.

Response to Comment Letter L2 – City of Chino

Response L2-a

Comment is introductory and general in nature. Therefore, no further action needed. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L2-b

The commentor states that the Project Traffic Impact Analysis (Traffic Analysis) does not assess impacts that are likely to occur in the City of Chino. The City disagrees with this assertion. Roadways and intersections that could likely be substantially affected by Project traffic were identified through the Project Traffic Study Scoping Agreement, included within *Appendix I1: Traffic Analysis* of the Draft EIR. The City of Ontario (the CEQA Lead Agency) has reviewed and approved the Traffic Study Scoping Agreement.

The Traffic Study Scoping Agreement identifies roadways and intersections located north, south, and east of the Project site as likely travel routes for traffic accessing the Project site. This is consistent with the Project location in the context of regional travel corridors, and the most direct travel routes available to Project traffic connecting with regional traffic corridors. More specifically, State Route 83 (SR-83, Euclid Avenue) comprises the Project site western boundary. Direct access to State Route 60 (SR-60) to the north, and State Route 71 (SR-71) to the south is provided by SR-83. Edison Avenue comprises the Project site southern boundary. Direct access to Interstate 15 (I-15) to the east is provided by Edison Avenue. It is considered unlikely that substantial traffic accessing the Project site would take a circuitous route traversing the City of Chino located west of the Project site, across SR-83. Please refer also to the Traffic Study Scoping Agreement, which is provided as Appendix 1.1: Traffic Study Scoping Agreement to *Appendix I1: Traffic Analysis* of the Draft EIR.

City of Chino Traffic Impact Analysis guidelines cited by the commentor are recognized. The Project is located in the City of Ontario (the CEQA Lead Agency). Accordingly, the Project Traffic Analysis has been prepared consistent with City of Ontario requirements.

As a general note, commentor concerns regarding Traffic Impact Analysis roadway performance standards (Level of Service [LOS] impacts) are recognized. However, LOS is not an environmental concern recognized under CEQA. The Traffic Analysis and LOS information presented in the Draft EIR are provided for the purposes of developing roadway general design and performance parameters. The City may employ these designs and standards in future planning and development of the area circulation system. LOS considerations do not affect findings and conclusions of the Draft EIR.

Based on the preceding, findings and conclusions of the Draft EIR are not affected. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L2-c

Comment noted. The comment makes no specific claim regarding the validity of the Draft EIR. Pursuant to State CEQA Guidelines Section 15088(a), a lead agency is only required to evaluate and respond to comments raised on environmental issues, and thus no further response is necessary. The City of Ontario

will coordinate with the City of Chino regarding improvements to Euclid Avenue including the modification of traffic signals at Schaefer Avenue, Red Bud Lane, and Edison Avenue. Generally, the City of Ontario will coordinate with the City of Chino to ensure compatible design(s) and construction of shared public improvements, and public improvements transitions. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L2-d

City of Chino General Plan Air Quality Chapter requirement for a 1,000-foot separation between distribution warehouse operations with 100 or greater trucks per day and sensitive receptors is recognized. The 1,000-foot separation is intended to buffer or avoid air pollutant effects of warehouse operations at proximate sensitive land uses. The Project is closer than 1,000 feet to the sensitive uses identified by the commentor; also depicted in *Section 4.12: Noise* of the Draft EIR, Figure 4.12-1: Sensitive Receptors and Noise Measurement Locations.³ The Project in total would generate more than 100 truck trips per day, as discussed in *Section 4.15: Transportation and Traffic* of the Draft EIR, page 4.15-13.

The Ontario Plan 2050 (TOP 2050) Policy ER-4.9 incorporates provisions similar to those adopted by the City of Chino addressing protection of sensitive land uses. TOP 2050 Policy ER-4.9 requires that new developments conduct a Health Risk Assessment (HRA) for land uses that generate more than 100 trucks per day, or 40 trucks per day for trucks with transportation refrigeration units (TRU's), if these developments are located within 1,000 feet of sensitive land uses.

Consistent with City of Ontario requirements, a construction and operational phase HRA has been prepared for the Project and is incorporated in Section 4.3: Air Quality and Appendix B of the Draft EIR. In this manner, the Draft EIR fully considers and addresses the Project's potential localized air quality impacts at sensitive uses, including those uses cited by the commentor. The analysis presented in Section 4.3: Air Quality of the Draft EIR, pages 4.3-30 through 4.3-44, and in the Project HRA Modeling within Appendix B of the Draft EIR substantiate that localized air quality impacts to all areas having sensitive receptors (including sensitive receptors located in the City of Chino) would be less-thansignificant as mitigated by MM AQ-1 through AQ-8. As shown in Section 4.3: Air Quality of the Draft EIR, page 4.3-28, MM AQ-1 requires the Project to use "Super-Compliant" low VOC paints. As shown in Section 4.3: Air Quality of the Draft EIR, pages 4.3-28 and 4.3-29, MM AQ-2 requires that all cargo handling equipment used on a daily basis (yard trucks/hostlers, forklifts, etc.) be electric. As shown in Section 4.3: Air Quality of the Draft EIR, page 4.3-29, MM AQ-3 requires the implementation of a Transportation Demand Management program to reduce single occupant vehicle trips and encourage transit. As shown in **Section 4.3: Air Quality** of the Draft EIR, pages 4.3-29 and 4.3-30, MM AQ-4 requires the buildings to be designed to accommodate electric vehicle infrastructure, and MM AQ-5 prohibits idling when engines are not in use. As shown in **Section 4.3: Air Quality** of the Draft EIR, page 4.3-30, MM AQ-6 prohibits the installation of wood-burning and natural gas devices. As shown in **Section 4.3: Air Quality** of the Draft EIR, page 4.3-30, MM AQ-7 prohibits refrigerated warehouse space/cold storage. As shown in Section 4.3: Air Quality of the Draft EIR, page 4.3-44, MM AQ-8 requires off-road equipment

City of Ontario July 2024

2-30

The nearest sensitive receptor to Project Phase I is a single-family residence located 135 feet (41 meters) west of the Project [in the City of Chino] (Draft EIR. p. 4.3-31)

50 horsepower or greater to meet California Air Resources Board Tier 4 Final standards. Therefore, no further revision to the analysis in the Draft EIR is required.

Response L2-e

The commenter is requesting clarification on the scope of the Preliminary Water Quality Management Plan that was prepared on March 16, 2023, for the Phase I area. The Phase II area is being evaluated only at a programmatic level, and there are no specific development proposals at this time. Upon commencement of project-level CEQA review for the Phase II area, a WQMP for the Phase II area would be conducted, similar to that of the Phase I analysis.

During future development of the Phase II area, Best Management Practices (BMPs), which could include debris capture, onsite filters, and full trash capture devices, would be incorporated as necessary. Additionally, *Section 4.10: Hydrology and Water Quality* of the Draft EIR, page 4.10-15, states that, while the Phase I development structures and associate would alter the existing hydrological characteristics of the site, impacts associated with water quality would be less than significant, as the Project would not increase the time of concentration and the post-development runoff volume would incorporate applicable BMPs. Therefore, the comment is noted for the record and no further revision to the Draft EIR is warranted.

Response L2-f

The commenter requests that dust control and circulation of traffic during construction should be maintained. As stated in *Section 4.3: Air Quality* of the Draft EIR, page 4.3-15, Project construction activities would be conducted in compliance with any applicable South Coast Air Quality Management District (SCAQMD) rules and regulations, including SCAQMD Rule 403. SCAQMD Rule 403 for Fugitive Dust requires fugitive dust sources to implement BMPs for all sources. Additionally, as discussed in *Section 4.15: Transportation and Traffic* of the Draft EIR, the Project would be required to comply with City Municipal Code Section 7-3.07, which requires that prior to any activity that would encroach into a right-of-way, the area be safeguarded through the installation of safety devices that would be specified by the City's Engineering Department during the construction permitting process to ensure that construction activities would not increase hazards. Therefore, no revisions to the Draft EIR are warranted.

Response L2-g

Comment noted. The comment makes no specific claim regarding the validity of the Draft EIR. Pursuant to State CEQA Guidelines Section 15088(a), a lead agency is only required to evaluate and respond to comments raised on environmental issues, and thus no further response is necessary. The Project would allow for approximately 12 acres of open space designated for non-recreational uses. While no buildings are proposed within this area, it is suitable for uses such as landscape plant nurseries, recreational vehicle and truck/trailer storage and other uses allowed by the City zoning. No further revision to the analysis in the Draft EIR is required.

Response L2-h

Comment is introductory and general in nature. Therefore, no further action needed.

This page intentionally left blank.

Comment Letter O1 - Blum, Collins & Ho LLP (Golden State Environmental Justice Alliance)

BLUM, COLLINS & HOLLP

ATTORNEYS AT LAW
AON CENTER
707 WILSHIRE BOULEVARD
SUITE 4880
LOS ANGELES, CALIFORNIA 90017
(213) 572-0400

February 5, 2024

Edmelynne V. Hutter Senior Planner City of Ontario 303 East "B" Street Ontario, CA 91764 VIA EMAIL TO: TGrahn@ontarioca.gov

Subject: Comments on Euclid Mixed Use Specific Plan EIR PLAN EIR (SCH NO. 2023020281)

Dear Ms. Hutter,

Thank you for the opportunity to comment on the Environmental Impact Report (EIR) for the proposed Euclid Mixed Use Specific Plan Project. Please accept and consider these comments on behalf of Golden State Environmental Justice Alliance. Also, Golden State Environmental Justice Alliance formally requests to be added to the public interest list regarding any subsequent environmental documents, public notices, public hearings, and notices of determination for this project. Send all communications to Golden State Environmental Justice Alliance P.O. Box 79222 Corona, CA 92877.

1.0 Summary

The project proposes to demolish all existing onsite structures to accommodate the construction and operation of the Euclid Mixed Use Specific Plan (EMUSP). The EMUSP is composed of primarily industrial land uses with ancillary supporting commercial and includes a residential aspect. The EMUSP is anticipated to be developed in two phases (Phase I: industrial and commercial; Phase II: residential) within five planning areas on 18 parcels covering 84.1 acres in the City of Ontario. The project includes 1,386,777 square feet of business park/industrial uses, 290,110 square feet of commercial retail/office uses, and up to 466 residential units, and associated on-site and off-site infrastructure improvements.

4.3 Air Quality, 4.6 Energy, and 4.8 Greenhouse Gas Emissions

Please refer to attachments from SWAPE for a complete technical commentary and analysis.

b c

a

The EIR does not include for analysis relevant environmental justice issues in reviewing potential impacts, including cumulative impacts from the proposed project. This is especially significant as the surrounding community is highly burdened by pollution. According to CalEnviroScreen 4.0¹, CalEPA's screening tool that ranks each census tract in the state for pollution and socioeconomic vulnerability. The proposed project's census tract (6071001905) is ranked in the 95th percentile for overall pollution burden, meaning the surrounding community bears the impact of multiple sources of pollution and is more polluted than average on several pollution indicators measured by CalEnviroScreen. For example, the project census tract ranks in the 80th percentile for ozone burden, 96th percentile for particulate matter (PM) 2.5 burden, and 61st percentile for diesel particulate matter burden. All of these environmental factors are typically attributed to heavy truck activity in the area. Ozone can cause lung irritation, inflammation, and worsening of existing chronic health conditions, even at low levels of exposure². The very small particles of diesel PM can reach deep into the lung, where they can contribute to a range of health problems. These include irritation to the eyes, throat and nose, heart and lung disease, and lung cancer³.

cont'd

The census tract ranks among the most severely impacted in several areas that impact water quality. The census tract ranks in the 98th percentile for groundwater threats. People who live near contaminated groundwater may be exposed to chemicals moving from the soil into the air inside their homes⁴. Accordingly, the census tract ranks in the 100th percentile for drinking water impacts, which indicates that it ranks with the worst quality drinking water in the state. Poor communities and people in rural areas are exposed to contaminants in their drinking water more often than people in other parts of the state⁵. The census tract also ranks in the 44th percentile for impaired waters. Water pollution can harm wildlife habitats and change the number and types of plants and animals in the environment⁶. When fish and shellfish are contaminated, people who eat them can be exposed to toxic substances⁷.

The census tract also ranks in the 96th percentile for solid waste facility impacts and 64th percentile for hazardous waste facility impacts. Solid waste facilities can expose people to hazardous chemicals, release toxic gases into the air (even after these facilities are closed), and chemicals can

d

¹ CalEnviroScreen 4.0 https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40

² OEHHA Ozone Burden https://oehha.ca.gov/calenviroscreen/indicator/air-quality-ozone

³ OEHHA Diesel Particulate Matter https://oehha.ca.gov/calenviroscreen/indicator/diesel-particulate-matter

OEHHA Groundwater Threats https://oehha.ca.gov/calenviroscreen/indicator/groundwater-threats

⁵ OEHHA Drinking Water https://oehha.ca.gov/calenviroscreen/drinking-water

⁶ OEHHA Impaired Waters https://oehha.ca.gov/calenviroscreen/indicator/impaired-water-bodies

⁷ Ibid.

leach into soil around the facility and pose a health risk to nearby populations⁸. Hazardous waste generators and facilities contribute to the contamination of air, water and soil near waste generators and facilities can harm the environment as well as people⁹.

cont'd e

The census tract ranks in the 70th percentile for toxic releases. People living near facilities that emit toxic releases may breathe contaminated air regularly or if contaminants are released during an accident ¹⁰.

]

Further, the census tract is a diverse community including 55% Hispanic, 3% African-American and 17% Asian-American residents, whom are especially vulnerable to the impacts of pollution. The community has a high rate of low educational attainment, meaning 52% of the census tract over age 25 has not attained a high school diploma, which is an indication that they may lack health insurance or access to medical care. The community also has a high rate of poverty, meaning 35% of the households in the census tract have a total income before taxes that is less than the poverty level. Income can affect health when people cannot afford healthy living and working conditions, nutritious food and necessary medical care. Poor communities are often located in areas with high levels of pollution¹². Poverty can cause stress that weakens the immune system and causes people to become ill from pollution¹³. Living in poverty is an indication that residents may lack health insurance or access to medical care. Medical care is vital for this census tract as it ranks in the 68th percentile for incidence of cardiovascular disease.

The community also has a high rate of linguistic isolation, meaning 76% of the census tract speaks little to no English and faces further inequities as a result.

The State of California lists three approved compliance modeling softwares¹⁴ for non-residential buildings: CBECC-Com, EnergyPro, and IES VE. CalEEMod is not listed as an approved software. The CalEEMod modeling does not comply with the 2022 Building Energy Efficiency Standards and under-reports the project's significant Energy impacts and fuel consumption to the public and decision makers. Since the EIR did not accurately or adequately model the energy

h

⁸ OEHHA Solid Waste Facilities https://oehha.ca.gov/calenviroscreen/indicator/solid-waste-sites-and-facilities

⁹ OEHHA Hazardous Waste Generators and Facilities

https://oehha.ca.gov/calenviroscreen/indicator/hazardous-waste-generators-and-facilities

¹⁰ OEHHA Toxic Releases https://oehha.ca.gov/calenviroscreen/indicator/toxic-releases-facilities

¹¹ OEHHA Poverty https://oehha.ca.gov/calenviroscreen/indicator/poverty

¹² Ibid.

¹³ Ibid.

¹⁴ California Energy Commission 2022 Energy Code Compliance Software https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2022-building-energy-efficiency-1

impacts in compliance with Title 24, a finding of significance must be made. A revised EIR with modeling using one of the approved software types must be prepared and circulated for public review in order to adequately analyze the project s significant environmental impacts. This is vital as the EIR utilizes CalEEMod as a source in its methodology and analysis, which is clearly not an approved software.

cont'd h

The EIR analyzes the potentially significant impacts from Greenhouse Gas Emissions in a qualitative manner pursuant to CEQA Guidelines Section 15064.4. However, the consistency analysis provided is erroneous and does not demonstrate a good-faith effort, based to the extent possible on scientific and factual data, to describe, calculate or estimate the amount of greenhouse gas emissions resulting from the project and its significance. The EIR quantitatively concludes that the proposed project will have an annual operational emissions of 36,129 MT CO2e (22,787 MT CO2e Phase I and 13,342 MT CO2e Phase II), which is 12 times greater than the threshold of 3,000 MT CO2e annually. The EIR includes MM GHG-1 to require that the "Project incorporate project design features to achieve a minimum score of 100 points on the Screening Tables" within the Ontario Community Climate Action Plan (CCAP). The EIR continues in stating that, "As stated in the Community CAP, projects that achieve a minimum score of 100 points are considered less than significant. A preliminary set of the screening tables has been completed to show that the Project can feasibly achieve 100 points (refer to Appendix B)."

However, Table 4.8-8: Community CAP Consistency provides erroneous and misleading consistency analysis of the proposed project with the reduction measures in order to conclude the project will have less than significant impacts. For example, Table 4.8-8 states that the project is consistent with "Transportation – Strategy 9, Transit-Oriented Development: Encourage development of compact, mixed-use, and transit-oriented development to improve the regional jobs-housing balance, especially on corridors served by high-ridership transit and bus rapid transit, such as Holt Avenue" because the "proposed Project would provide a mixed-use development along a high volume corridor, Euclid Avenue." This does not reflect the status of the transit facilities adjacent to the project site. The EIR states within the Transportation analysis that "The City is coordinating with regional transit agencies to implement BRT service to target destinations and along corridors, including Euclid Avenue on the western boundary of the Project site. The Project is located near Omnitrans Route 81. Omnitrans Route 81 operates on Riverside Drive north of the site. However, there are no existing bus routes near the vicinity of the Project." Bus service, including BRT that would serve a Transit Oriented Development, does not exist near the project site. The proposed project is not a Transit Oriented Development and will not be served by transit.

To further demonstrate the inaccuracy of proposed GHG reductions, Table 4.8-9: GHG Reduction Measures Screening Table for Ontario Development includes consistency analysis and CCAP

k

points for the residential portion of the proposed project, which is analyzed at a Programmatic level in the EIR. There is no site plan or development information provided for the proposed residential as part of the EIR. It is not appropriate to assign GHG reductions based on project-level specifics that are not discussed or included in the EIR otherwise for analysis and the residential portion of the project is only analyzed at a Programmatic level throughout the EIR. For example, the EIR assigns CCAP points for residential "Building Placement: North/South alignment of building or other building placement such that the orientation of the buildings optimizes natural heating, cooling, and lighting," and "Daylighting: All rooms daylighted," even though there is no site plan or floor plan provided. It is not possible to predict the layout of the future residential building placement and floor plan layouts within those buildings.

The efficacy of the proposed mitigation measures and reduction of GHG impacts below the applicable thresholds via points counted on the CCAP Tables cannot be assured and the project's GHG impact is therefore considered significant and unavoidable. A revised EIR must be prepared to include a finding of significance because there is no possible assurance that the project will comply with the proposed CCAP items, and the project site is factually not served by BRT, or any form of transit, and the EIR has utilized the CCAP screening tables to mislead the public and decision makers by erroneously concluding that a qualitative assessment of the project will reduce the project's 36,129 MT CO2e annual emissions to less than significant levels. Mitigation of the project's GHG impact to less than significant is not feasible, whether via the CCAP tables or otherwise.

Table 4.8-10: 2020-2045 RTP/SCS Consistency provides a misleading and erroneous consistency analysis with SCAG's 2020-2045 Connect SoCal RTP/SCS. Due to errors in modeling, modeling without supporting evidence (as noted throughout this comment letter and attachments), and the EIR's conclusion that the proposed project will have significant and unavoidable impacts to Air Quality and Greenhouse Gas Emissions, the project is directly inconsistent with Goal 5 to reduce greenhouse gas emissions and improve air quality, Goal 6 to support healthy and equitable communities, and Goal 7 to adapt to a changing climate. A revised EIR must be prepared to include a finding of significance due to these inconsistencies with SCAG's 2020-2045 Connect SoCal RTP/SCS.

4.9 Hazards and Hazardous Materials

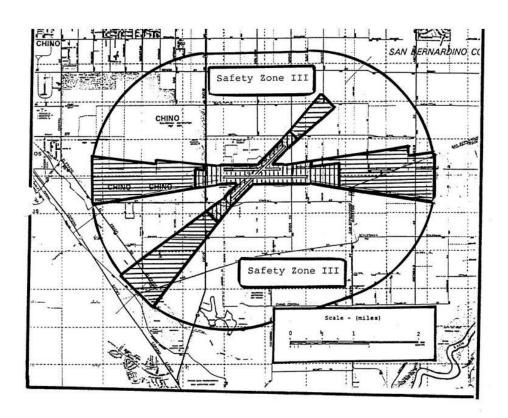
The EIR has not adequately or accurately analyzed the proposed project in accordance with CEQA Guidelines Environmental Checklist threshold, "For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working

cont'd

1

m

n


in the project area?" It appears the EIR has solely utilized Chino Airport compatibility information from the Riverside Airport Land Use Commission. Chino Airport and the project site are both located within San Bernardino County, meaning that the San Bernardino County Airport Land Use Commission has jurisdiction over both items. Figure 4.9-1: Chino Airport Compatibility Zones is sourced to Riverside Airport Land Use Compatibility Plan Policy Document, Map CH-1 Compatibility Map Chino Airport, 2008, which ultimately does not provide a completely accurate depiction of analysis as RCALUC is not the approval body. Notably, it appears that the project site, including the southern residential portion of the site, is within Safety Zone III, which is a potentially significant impact that has not been analyzed by the EIR. The EIR must be revised to include an accurate consistency analysis with the SBALUC Chino Airport Compatibility Plan 15.

cont'd

n

City of Ontario July 2024

¹⁵ https://www.sbcountv.gov/Uploads/lus/Airports/Chino.pdf

cont'd

4.11 Land Use and Planning

The EIR omits discussion and analysis regarding the project's inconsistency with other land use plans, policies, or regulations adopted for the purpose of avoiding or mitigating an environmental effect. For example, the project will have a significant and unavoidable cumulatively considerable impact to Air Quality because it will exceed the assumptions in the AQMP and generate operational-source emissions (VOC and NOX) that exceed SCAQMD thresholds. The project will also have a significant and unavoidable cumulatively considerable impact to Greenhouse Gas Emissions because the annual operational emissions of 36,129 MT CO2e (22,787 MT CO2e Phase I and 13,342 MT CO2e Phase II) will exceed the City's threshold of 3,000 MT CO2e per year and

0

will impede long-term GHG reduction goals of various plans (e.g., for 2030 and 2050) adopted for the purpose of reducing GHG emissions. The Land Use and Planning analysis omits any discussion regarding inconsistencies with the AQMP and California's statewide GHG reduction goals for 2030 and 2050. The EIR must be revised to include these significant and unavoidable cumulatively considerable impacts for analysis and include a finding of significance.

The EIR also does not provide any information regarding the buildout conditions of the City's General Plan. The EIR must be revised to provide a cumulative analysis discussion of projects approved since General Plan adoption and projects in the pipeline" to determine if the project will exceed the City's General Plan buildout scenario.

Table 4.11-2: Consistency with SCAG's 2020-2045 RTP/SCS Goals provides a misleading and erroneous consistency analysis with SCAG's 2020-2045 Connect SoCal RTP/SCS. Due to errors in modeling, modeling without supporting evidence (as noted throughout this comment letter and attachments), and the EIR's conclusion that the proposed project will have significant and unavoidable impacts to Air Quality and Greenhouse Gas Emissions, the project is directly inconsistent with Goal 5 to reduce greenhouse gas emissions and improve air quality, Goal 6 to support healthy and equitable communities, and Goal 7 to adapt to a changing climate. A revised EIR must be prepared to include a finding of significance due to these inconsistencies with SCAG's 2020-2045 Connect SoCal RTP/SCS.

The EIR does not provide an accurate consistency analysis with all land use plans, policies, or regulations adopted for the purpose of avoiding or mitigating an environmental effect. Table 4.11-3: Consistency with the City of Ontario General Plan (TOP) 2050 provides a misleading and erroneous consistency analysis with several items from the TOP:

Policy LU5-7 ALUCP Consistency with Land Use Regulations. We comply with state law
that requires general plans, specific plans and all new development be consistent with the
policies and criteria set forth within an Airport Land Use Compatibility Plan for any public
use airport.

As stated above, the EIR has not adequately or accurately analyzed the project's consistency with the San Bernardino County ALUC Chino Airport Compatibility Plan. The EIR must be revised to include a statement regarding the inconsistency and include a finding of significance.

Policy ER4-1 Land Use. We reduce GHG and other local pollutant emissions through compact, mixed use, and transit-oriented development and development that improves the regional jobs-housing balance. cont'd

р

q

r

s

t

W

Edmelynne V. Hutter February 5, 2024 Page 9

As stated above, the EIR has provided a misleading and inaccurate qualitative analysis of the project's GHG emissions that cannot be feasibly assured to reduce GHG emissions to less than significant levels. The EIR must be revised to include a statement regarding the inconsistency and include a finding of significance.

3. Policy ER4-6 *Particulate Matter*. We support efforts to reduce particulate matter to meet State and Federal Clean Air Standards.

The EIR concludes that the proposed project will have significant and unavoidable impacts to Air Quality, including inconsistency with the AQMP and exceeding emissions threshold for VOC and NOX. The EIR must be revised to include a statement regarding the inconsistency and include a finding of significance.

Further, the EIR has not provided consistency analysis with all TOP items, and a revised EIR must be prepared to include a consistency analysis with all goals and policies of the TOP, including but not limited to the following:

- 1. Policy CE3-1 *Fiscal Impact Disclosure*. We require requests for City Council action to disclose the full fiscal impacts, including direct and indirect costs.
- Policy M1-5. Roadways maintain a peak hour Level of Service (LOS) E or better at all intersections.

Table 1-3: Summary of Improvements by Analysis Scenario within Appendix I concludes the following intersections outside the sole jurisdiction of the lead agency require improvements to address the peak hour deficiencies per the applicable thresholds of significance. Appendix I and Table 1-3 also provide a list of fair-share calculations for improvements that will allegedly mitigate significant and unavoidable impacts to the intersections to less than significant levels.

- 1. #1: Euclid Av. (SR-83) & SR-60 WB Ramps (Ontario/Caltrans)
- 2. #2: Euclid Av. (SR-83) & SR-60 EB Ramps (Ontario/Caltrans)
- 3. #4: Euclid Av. (SR-83) & Riverside Dr (Ontario/Caltrans/Chino)
- 4. #5: Euclid Av. (SR-83) & Chino Av (Ontario/Caltrans/Chino)
- 5. #6: Euclid Av. (SR-83) & Schaefer Av (Ontario/Caltrans/Chino)
- 6. #11: Euclid Av. (SR-83) & Edison Av. (Ontario/Caltrans/Chino)
- 7. #12: Euclid Av. (SR-83) & Eucalyptus Av. (Ontario/Caltrans/Chino)
- 8. #13: Euclid Av. (SR-83) & Merrill Av. (Ontario/Caltrans/Chino)

City of Ontario July 2024

- 9. #14: Euclid Av. (SR-83) & Kimball Av. (Caltrans/Chino)
- 10. #40: Hamner Av. & Ontario Ranch Rd. (Ontario/Eastvale)

It must be noted that impacts to the intersections listed above are under jurisdiction of Chino or Eastvale and most of them are also Caltrans facilities. Any improvements planned/constructed or in-lieu fees/fair share fees paid for Chino, Eastvale, or Caltrans facilities are beyond the control/scope of the lead agency. An assessment of fees is appropriate when linked to a specific mitigation program. (Anderson First Coalition v. City of Anderson (2005) 130 Cal. App. 4th 1173, Save our Peninsula Comm. v. Monterey County Bd. Of Supers. (2001) 87 Cal.App.4th 99, 141.) Payment of fees is not sufficient where there is no evidence mitigation will actually result. (Gray v. County of Madera (2008) 167 Cal.App.4th 1099,1122.) The assessment of fees here is not adequate as there is no evidence mitigation will actually result. Not all of the improvements required are part of an existing DIF/TUMF program and therefore are not planned to occur at all or by any certain date, whether by the City of Chino, Eastvale, or Caltrans. Any improvements recommended or fees paid to mitigate impacts for Chino, Eastvale, or Caltrans facilities are beyond the control of the lead agency and evidence that these improvements will be completed or approved by Chino, Eastvale, or Caltrans has not been provided. A revised EIR must be prepared to include the LOS analysis as cumulatively considerable significant impact as the project conflicts with Transportation Impact Threshold A and Land Use and Planning Impact Threshold B because it is not consistent with the following General Plan Policy:

 Policy M1-5. Roadways maintain a peak hour Level of Service (LOS) E or better at all intersections.

4.13 Population and Housing

The project faces significant inconsistencies with statutory requirements of the Housing Crisis Act (HCA) of 2019/Senate Bill (SB) 330¹⁶/SB 8¹⁷. The HCA/SB 330/SB 8 require replacement housing sites when land designated for housing development experience land use changes to ensure no net loss of housing capacity. Several parcels within the project site have a General Plan land use designation of Mixed-Use Great Park that permits the development up to 65 dwelling units per acre, and a few of those parcels are also identified as sites to accommodate the RHNA

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200SB330

cont'd

X

¹⁶ Housing Crisis Act of 2019/SB 330

¹⁷ SB 8 https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=202120220SB8

within Table B-2: Housing Element Sites Inventory - Candidate Sites to be Rezoned¹⁸ within the City's HCD Certified Housing Element:

1. 105328101 (Housing Element Site 2-81)

Size: 8.41 Acres

Maximum Density: 65 du/acre

Maximum Dwelling Units per MU-GP: 546 Housing Element Very Low income units: 65 Housing Element Low income units: 38 Housing Element Moderate income units: 51 Housing Element Above Moderate income units: 51

Housing Element Total units: 205

2. 105328102 (Housing Element Site 2-82)

Size: 2.1 Acres

Maximum Density: 65 du/acre

Maximum Dwelling Units per MU-GP: 136
Housing Element Very Low income units: 16
Housing Element Low income units: 9
Housing Element Moderate income units: 13
Housing Element Above Moderate income units: 13

Housing Element Total units: 51

3. 105328103 (Housing Element Site 2-83)

Size: 2.7 Acres

Maximum Density: 65 du/acre

Maximum Dwelling Units per MU-GP: 175 Housing Element Very Low income units: 21 Housing Element Low income units: 12 Housing Element Moderate income units: 17 Housing Element Above Moderate income units: 17

Housing Element Total units: 67

4. 105328108 (Housing Element Site 2-84)

Size: 2.7 Acres

18 https://www.ontarioca.gov/sites/default/files/Ontario-

Files/Planning/The%20Ontario%20Plann/Housing/HE%20Adopted%2020220821%20Clean 0.pdf

cont'd

Maximum Density: 65 du/acre

Maximum Dwelling Units per MU-GP: 338
Housing Element Very Low income units: 40
Housing Element Low income units: 24
Housing Element Moderate income units: 32
Housing Element Above Moderate income units: 32

Housing Element Total units: 128

5. 105328104

Size: 0.34 Acres

Maximum Density: 65 du/acre

Maximum Dwelling Units per MU-GP: 22

6. 105328105

Size: 0.01 Acres

Maximum Density: 65 du/acre

Maximum Dwelling Units per MU-GP: 1

7. 105328107

Size: 0.34 Acres

Maximum Density: 65 du/acre

Maximum Dwelling Units per MU-GP: 22

Total residential dwelling unit capacity per MU-GP: 1,240

Total Housing Element Very Low income units: 142

Total Housing Element Low income units: 83

Total Housing Element Moderate income units: 113

Total Housing Element Above Moderate income units: 113

Total Housing Element units: 451

Total Affordable Housing Element units: 338

Government Code Section 66300(b)(1)(A) requires that agencies shall not change the general plan land use designation, specific plan land use designation, or zoning to a less intensive use below what was allowed under the land use designation and zoning ordinances in effect at the time of the proposed change." Under Government Code Section 66300(b)(1)(A), a less intensive use" includes, but is not limited to, reductions to height, density, or floor area ratio, new or increased open space or lot size requirements, or new or increased setback requirements, minimum frontage requirements, or maximum lot coverage limitations, or any other action that would individually or

cont'd

у

<u>cumulatively reduce residential development capacity.</u> Pursuant to SB 330, <u>replacement capacity</u> for any displaced residential units must be provided **concurrently** at the **time of project approval**.

cont'

Government Code Section 66300 (h)(i)(1) states that, "this section does not prohibit an affected county or an affected city, including the local electorate acting through the initiative process, from changing a land use designation or zoning ordinance to a less intensive use, or reducing the intensity of land use, if the city or county concurrently changes the development standards, policies, and conditions applicable to other parcels within the jurisdiction to ensure that there is no net loss in residential capacity." The EIR is misleading in stating that the project will allow the development of 466 residential units and result in a less than significant impact. As calculated above, the MU-GP designation of the listed project sites provides development capacity for 1,240 residential units. Adoption of the Euclid Mixed Use Specific Plan (PSP22-001) as part of the proposed project will result in a reduction of the existing residential development capacity by 774 units to a decreased development capacity of 466 residential units.

z

This is in conflict with SB 8 that expanded the provisions of the HCA to include Government Code Section 66300 (h)(i)(1) requiring concurrent approval of replacement sites to ensure no net loss in residential capacity, and Section 66300 (h)(2)(A) defining concurrently" to mean the action is approved at the same meeting of the legislative body. The EIR has not identified replacement sites for the net loss in residential capacity for 774 units as a result of adopting the Euclid Mixed Use Specific Plan. The loss in residential capacity must be included as a finding of significance as part of a revised EIR. The EIR does not act in conformance with the HCA/SB 330/SB 8 and the lost zoning capacity of any dwelling units is a significant environmental impact in violation of the HCA/SB 330/SB 8. The EIR must be revised to include a finding of significance due to this inconsistency.

aa

Additionally, deferring the environmental analysis of construction and operation of replacement sites to a later date is project piecemealing in violation of CEQA. The EIR does not accurately or adequately describe the project, meaning the whole of an action, which has a potential for resulting in either a direct physical change in the environment, or a reasonably foreseeable indirect physical change in the environment" (CEQA § 15378). The whole of the action must statutorily and legally include the identification of replacement sites and all associated actions required to implement development of at least 774 residential units.

bb

The project also faces inconsistency with State Housing Element Law. Pursuant to Government Code Section 65863¹⁹, a jurisdiction shall ensure that its housing element sites inventory "can accommodate, <u>at all times throughout the planning period</u>, its remaining unmet share of the regional housing need allocated pursuant to Section 65584" and "<u>at no time</u>...shall a city, county, or city and county by administrative, quasi-judicial, legislative, or other action permit or cause its inventory of sites identified in the housing element to be insufficient to meet its remaining unmet share of the regional housing need for lower and moderate-income households." Further, this Section states the following:

"No city, county, or city and county shall, by administrative, quasi-judicial, legislative, or other action, reduce, or require or permit the reduction of, the residential density for any parcel to, or allow development of any parcel at, a lower residential density, as defined in paragraphs (1) and (2) of subdivision (g), unless the city, county, or city and county makes written findings supported by substantial evidence of both of the following:

- (A) The reduction is consistent with the adopted general plan, including the housing element.
- (B) The remaining sites identified in the housing element are adequate to meet the requirements of Section 65583.2 and to accommodate the jurisdiction's share of the regional housing need pursuant to Section 65584. The finding shall include a quantification of the remaining unmet need for the jurisdiction's share of the regional housing need at each income level and the remaining capacity of sites identified in the housing element to accommodate that need by income level."

As shown above and summarized below, several parcels within the project site are identified as part of the City's identified sites inventory to accommodate its RHNA allocation in the Housing Element:

Total Housing Element units: 451
Total Affordable Housing Element units: 338

The EIR has not provided any analysis to demonstrate that adoption of the Euclid Mixed Use Specific Plan will yield 338 affordable units in the income categories specified in the Housing Element. The total residential capacity of the parcels will be reduced to 466 units, meaning that 72% of residential development on the sites must be deed-restricted affordable housing in order for the City to meet its lower income RHNA throughout the planning period. A significant impact exists and the EIR has not demonstrated that the remaining sites identified in the housing element

https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=GOV§ionNum=65863

CC

dd

¹⁹ Government Code Section 65863

are adequate to meet the requirements of Government Code Section 65583.2 and to accommodate the jurisdiction s share of the regional housing need pursuant to Government Code Section 65584 through the end of the 2021-2029 planning period. The EIR has not demonstrated that the City's Housing Element can accommodate at all times throughout the planning period its remaining unmet share of the regional housing need. The EIR must be revised to include a finding of significance because there is no meaningful evidence that the City can continue to accommodate its RHNA (including the lower income RHNA) following the approval of the proposed project.

The EIR does not provide any calculation of construction jobs generated by the proposed project. The EIR utilizes uncertain and misleading language in stating that, "Construction-related jobs would not result in a significant population increase because they are expected to be filled by persons within the local economy. The unemployment rate is approximately 4.1 percent within the jurisdictions in the Project vicinity of the Riverside-San Bernardino-Ontario Metropolitan Area as of 2021. Because many of the employment opportunities are expected to be filled by persons within the local economy, it is anticipated that an adequate number of persons are available to fill the employment positions without constructing new residential units. Furthermore, the small percentage of skilled and managerial positions could either be filled by the local economy or by persons outside the local economy." This does not provide any meaningful analysis or calculation of the project's population and employment generation. The EIR relies upon the Riverside-San Bernardino-Ontario MSA overall unemployment rates (2021) to fill the project's jobs without providing information on whether the unemployed workforce is interested in or qualified for work in the construction and/or industrial sectors. Relying on the entire population of the Riverside-San Bernardino-Ontario MSA to fill the project's construction and operational jobs will increase VMT and emissions during all phases of construction and operations and a revised EIR must be prepared to account for longer worker trip distances. In order to comply with CEQA's requirements for meaningful disclosure and adequate informational documents, a revised EIR must be prepared to provide an accurate estimate of employees generated by all uses of the proposed project, including construction. It must also provide demographic and geographic information on the location of qualified workers to fill these positions.

Table 4.13-6: Phase I Project Generated Employment utilizes The Ontario Plan Draft EIR, Appendix J: Land Use Modeling Methodology as its source to calculate the jobs generated by project operations. However, the weblink provided to the DEIR only provides information on the SEIR approved in 2022. All of the DEIR documents have been removed from the City website. Therefore, Appendix J of The Ontario Plan Draft EIR is not included for public review. This does not comply with CEQA's requirements for adequate informational documents and meaningful disclosure (CEQA § 15121 and 21003(b)). Incorporation by reference (CEQA § 15150 (f)) is not appropriate as Appendix J of The Ontario Plan Draft EIR contributes directly to analysis of the

cont'd

ee

ff

problem at hand by providing the methodology for calculating the jobs generated by the project. A revised EIR must be prepared to include Appendix J of The Ontario Plan Draft EIR for review, analysis, and comment by the public and decision makers.

Additionally, the EIR relies upon the regional SCAG jobs-housing balance to conclude the project will have less than significant impacts. This does not address the impacts of the project to the City. Notably, Table 4.13-7: Combined Phase I and II, Projected Jobs-Housing Balance shows that the City has a jobs-housing balance of 2.47 (2016) and is projected to have a jobs-housing balance of 2.26 (2045). As stated in the EIR, "SCAG considers an area balanced when the jobs-housing balance is 1.36; communities with more than 1.36 jobs per dwelling unit are considered jobs-rich, while those with fewer than 1.36 are housing-rich." The approval of the proposed project will exacerbate the City's imbalance of jobs and housing by adding more jobs without providing the residential capacity of 1,240 residential units to help achieve a jobs-housing balance in accordance with SCAG's threshold. The EIR must be revised to include a finding of significance due to this.

SCAG's 2020-2045 RTP/SCS Connect SoCal Demographics and Growth Forecast²⁰ notes that Ontario will add 55,400 jobs between 2016 - 2045. The EIR utilizes uncertain and misleading language in stating generally that SCAG anticipates Ontario to employ approximately 169,300 people by 2045, and "therefore the project generated jobs are well within the employment projections for the City." The EIR does not provide any cumulative analysis discussion of projects approved since 2016 and projects "in the pipeline" to determine if the project will exceed the employment/population growth forecasts by SCAG and/or the General Plan. For example, other recent industrial projects such as PDEV21-003²¹ (23,100 square foot industrial building), PDEV21-010²² (808,639 sf of industrial buildings), PDEV21-010²³ (1,438,926 sf industrial building), PDEV21-016²⁴ (38,445 sf industrial building), PDEV21-018²⁵ (168,772 sf of industrial

cont'o

gg

hh

²⁰ SCAG Connect SoCal Demographics and Growth Forecast adopted September 3, 2020 https://scag.ca.gov/sites/main/files/file-attachments/0903fconnectsocal_demographics-and-growth-forecast.pdf?1606001579

²¹ Ontario Monthly Application Activity February 2021 https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/Monthly-Activity-Reports/2021/02-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf

 ²² Ibid.
 23 Ontario Monthly Application Activity March 2021
 https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/Monthly-Activity-Reports/2021/03-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf

²⁴ Ontario Monthly Application Activity April 2021 https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/04-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf
²⁵ Ontario Monthly Application Activity May 2021 https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/04-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf

²⁵ Ontario Monthly Application Activity May 2021 https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/05-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf

buildings), PDEV21-020²⁶ (50,121 sf industrial building), PDEV21-024²⁷ (198,496 sf industrial building), PDEV21-026²⁸ (45,000 sf industrial building), PDEV21-028²⁹ (32,425 sf industrial building), PDEV21-029³⁰ (15,132 sf industrial building), PDEV21-030³¹ (175,047 sf industrial building), PDEV21-031³² (38,155 sf industrial building), PDEV21-034³³ (32,000 sf industrial building), PDEV21-035³⁴ (60,455 sf industrial building), PDEV21-040³⁵ (1,255,320 sf industrial building), PDEV21-047³⁶ (4,281,128 sf industrial building), PDEV21-037³⁷ (167,600 sf industrial building), PDEV22-010 & PMTT22-008: East State Street Warehouse Project³⁸ (336,761 square foot warehouse), South Ontario Logistics Center Specific Plan³⁹ (5,333,518 sf industrial space), and 5355 East Airport Drive⁴⁰ (270,337 sf industrial building) combined with the proposed project will cumulatively generate 16,561,154 sf of industrial space. This is approximately 13,567 employees, which is 24.5% of the City's employment growth forecast over 29 years accounted for only by a limited quantity of industrial projects. This total increases exponentially when other industrial and commercial development activity is added to the calculation. A revised EIR must be prepared to include this information for analysis, and also provide a cumulative analysis discussion of projects approved since 2016 and projects "in the pipeline" to determine if the proposed project will exceed the employment/population growth forecasts by SCAG and/or the General Plan.

cont'd hh

July 2024 City of Ontario 2-49

²⁶ Ontario Monthly Application Activity June 2021 https://www.ontarioca.gov/sites/default/files/Ontario- Files/Planning/06-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf

²⁷ Ontario Monthly Application Activity July 2021 https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/07-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf

²⁸ Ibid.

²⁹ Ibid.

³⁰ Ontario Monthly Application Activity August 2021

https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/08-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf

³¹ Ontario Monthly Application Activity September 2021

https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/09-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf 32 Ibid.

³³ Ibid.

³⁴ Ontario Monthly Application Activity October 2021

https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/10-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf ³⁵ Ontario Monthly Application Activity November 2021

https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/11-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf

³⁶ Ontario Monthly Application Activity December 2021

https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/12-2021%20Monthly%20Activity%20Report%20-%20New%20Apps.pdf ³⁷ PDEV21-037 https://ceqanet.opr.ca.gov/2022110019

³⁸ https://ceganet.opr.ca.gov/2022120581

³⁹ https://ceqanet.opr.ca.gov/Project/2021010318

⁴⁰ https://ceganet.opr.ca.gov/2022090006/2

4.15 Transportation and Traffic

Table 1-3: Summary of Improvements by Analysis Scenario within Appendix I concludes the following intersections outside the sole jurisdiction of the lead agency require improvements to address the peak hour deficiencies per the applicable thresholds of significance. Appendix I and Table 1-3 also provide a list of fair-share calculations for improvements that will allegedly mitigate significant and unavoidable impacts to the intersections to less than significant levels.

- 1. #1: Euclid Av. (SR-83) & SR-60 WB Ramps (Ontario/Caltrans)
- 2. #2: Euclid Av. (SR-83) & SR-60 EB Ramps (Ontario/Caltrans)
- 3. #4: Euclid Av. (SR-83) & Riverside Dr (Ontario/Caltrans/Chino)
- 4. #5: Euclid Av. (SR-83) & Chino Av (Ontario/Caltrans/Chino)
- 5. #6: Euclid Av. (SR-83) & Schaefer Av (Ontario/Caltrans/Chino)
- 6. #11: Euclid Av. (SR-83) & Edison Av. (Ontario/Caltrans/Chino)
- 7. #12: Euclid Av. (SR-83) & Eucalyptus Av. (Ontario/Caltrans/Chino)
- 8. #13: Euclid Av. (SR-83) & Merrill Av. (Ontario/Caltrans/Chino)
- 9. #14: Euclid Av. (SR-83) & Kimball Av. (Caltrans/Chino)
- 10. #40: Hamner Av. & Ontario Ranch Rd. (Ontario/Eastvale)

It must be noted that impacts to the intersections listed above are under jurisdiction of Chino or Eastvale and most of them are also Caltrans facilities. Any improvements planned/constructed or in-lieu fees/fair share fees paid for Chino, Eastvale, or Caltrans facilities are beyond the control/scope of the lead agency. An assessment of fees is appropriate when linked to a specific mitigation program. (Anderson First Coalition v. City of Anderson (2005) 130 Cal.App.4th 1173, Save our Peninsula Comm. v. Monterey County Bd. Of Supers. (2001) 87 Cal.App.4th 99, 141.) Payment of fees is not sufficient where there is no evidence mitigation will actually result. (Gray v. County of Madera (2008) 167 Cal.App.4th 1099,1122.) The assessment of fees here is not adequate as there is no evidence mitigation will actually result. Not all of the improvements required are part of an existing DIF/TUMF program and therefore are not planned to occur at all or by any certain date, whether by the City of Chino, Eastvale, or Caltrans. Any improvements recommended or fees paid to mitigate impacts for Chino, Eastvale, or Caltrans facilities are beyond the control of the lead agency and evidence that these improvements will be completed or approved by Chino, Eastvale, or Caltrans has not been provided. A revised EIR must be prepared to include the LOS analysis as cumulatively considerable significant impact as the project conflicts with

ii

Transportation Impact Threshold A and Land Use and Planning Impact Threshold B because it is not consistent with the following General Plan Policy:

cont'd ii

jj

 Policy M1-5. Roadways maintain a peak hour Level of Service (LOS) E or better at all intersections.

Further, the VMT analysis has underestimated the proposed projects VMT generation. The EIR has not analyzed the project's truck/trailer/delivery van activity. A revised EIR must be prepared to include all truck/trailer/delivery van activity for quantified VMT analysis. The operational nature of industrial/warehouse uses involves high rates of truck/trailer/delivery van VMT due to traveling from large import hubs to regional distribution centers to smaller industrial parks and then to their final delivery destinations. Once employees arrive at the warehouses for work, they will conduct their jobs by driving truck/trailer/delivery vans across the region as part of the daily operations as a warehouse, which will drastically increase project-generated VMT. The project's truck/trailer and delivery van activity is unable to utilize public transit or active transportation and it is misleading to the public and decision makers to exclude this activity from VMT analysis. A revised EIR must be prepared to reflect a quantified VMT analysis that includes all truck/trailer and delivery van activity.

The EIR has not adequately analyzed the project's potential to substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses; or the project's potential to result in inadequate emergency access. There are no exhibits adequately depicting the available maneuvering and queueing space for trucks/trailers at the intersection of the project driveways and the adjacent streets. There are also no exhibits adequately depicting the onsite turning radius available for trucks maneuvering throughout the site. The EIR states that, "Implementation of the Specific Plan through the City's permitting process would reduce potential construction related increases in hazards to a less than significant level. Furthermore, the Project includes driveway and intersection improvements that would be implemented as part of the Project." This does not comply with CEQA's requirements for adequate informational documents and meaningful disclosure (CEQA § 15121 and 21003(b)). Deferring this environmental analysis required by CEQA to the construction permitting phase is improper mitigation and does not comply with CEQA's requirement for meaningful disclosure and adequate informational documents. A revised EIR must be prepared to include a complete truck turning template and geometric hazards analysis for review, analysis, and comment by the public and decision makers in order to provide an adequate and accurate environmental analysis.

kk

The EIR also states that, "In addition, the Project includes improvements to allow for heavy truck access to the Project site. Conflicts have the potential to occur if: 1) there is inadequate site access or 2) there is inadequate turning radii in and out of the site. Implementation of the Specific Plan and its circulation plans would ensure avoidance of these inadequacies," without providing any meaningful evidence to support this claim. There is no supporting documentation to demonstrate that the project site has adequate turning radii in and out of the site and/or adequate site access. This does not comply with CEQA's requirements for adequate informational documents and meaningful disclosure (CEQA § 15121 and 21003(b)). Deferring this environmental analysis required by CEQA to the construction permitting phase is improper mitigation and does not comply with CEQA's requirement for meaningful disclosure and adequate informational documents. A revised EIR must be prepared to include a complete truck turning template and geometric hazards analysis for review, analysis, and comment by the public and decision makers in order to provide an adequate and accurate environmental analysis.

The EIR makes a similar statement regarding emergency access, stating that "The City, as part of its discretionary review process, reviewed the Project's application materials to ensure that appropriate emergency ingress and egress would be available to-and-from the Project site and that circulation on the Project site was adequate for emergency vehicles," but the City's review and determination of the project application materials is not included for public review as part of the EIR. This does not comply with CEQA's requirements for adequate informational documents and meaningful disclosure (CEQA § 15121 and 21003(b)). Deferring this environmental analysis required by CEQA to the construction permitting phase is improper mitigation and does not comply with CEQA's requirement for meaningful disclosure and adequate informational documents. A revised EIR must be prepared to include the City determination/review of the project and its Site Plan for review, analysis, and comment by the public and decision makers in order to provide an adequate and accurate environmental analysis.

Additionally, the EIR has not provided any analysis of the available horizontal and vertical sight distance at the intersection of the project driveways and adjacent streets. Sight distance is the continuous length of street ahead visible to the driver. At unsignalized intersections, corner sight distance must provide a substantially clear line of sight between the driver of the vehicle waiting on the minor road (driveway) and the driver of an approaching vehicle. A revised EIR must be prepared with this analysis based on the American Association of State Highway and Transportation Officials (AASHTO) Stopping Sight Distance requirements.

11

mm

nn

5.2 Growth Inducing Impacts

A revised EIR must be prepared to include an accurate cumulative analysis discussion here to demonstrate the impact of the proposed project in a cumulative setting. The EIR does not include any information regarding the buildout conditions of the City's General Plan in order to provide an adequate and accurate cumulative analysis. The revised EIR must provide the horizon year of the City's current adopted General Plan, the total developable building floor area analyzed within the project site's land use designations, and cumulative development since adoption of the General Plan to ensure that the proposed project is within the General Plan EIR's analysis, particularly since the EIR tiers from the General Plan EIR. This is particularly vital as growth generated by the proposed project is in conflict with the AOMP.

The EIR does not discuss its own conclusion that implementation of the proposed project will result in significant and unavoidable Agriculture and Forestry Resources, Air Quality, Biological Resources, Cultural Resources, Geology and Soils, GHG emissions, and Hazards and Hazardous Materials impacts. The EIR must be revised to include a finding of significance due to the project's significant and unavoidable Agriculture and Forestry Resources (cumulatively considerable), Air Quality (cumulatively considerable), Greenhouse Gas Emissions, Biological Resources, Cultural Resources, and Geology and Soils impacts and direct contribution to climate change.

The EIR does not adequately discuss or and analyze the commitment of resources is not consistent with regional and local growth forecasts and does not address the EIR's own conclusion that the project will result in impacts (Air Quality, GHG) that exceed with the forecasts of the applicable plans (AQMP, 2030/2050 GHG reduction goals). As noted throughout this comment letter, the project represents a significant amount of growth in the City and quantitatively exceeds the 3,000 MT CO2E annual emissions threshold by more than 12 times. The EIR has not provided an adequate or accurate cumulative analysis discussion here to demonstrate the impact of the proposed project in a cumulative setting. For example, recent industrial projects combined with the proposed project will cumulatively generate 16,561,154 sf of industrial space. This is approximately 13,567 employees, which is 24.5% of the City's employment growth forecast over 29 years accounted for only by a limited quantity of industrial projects (conservative analysis that only cumulatively accounts for industrial projects submitted in 2021). This total increases exponentially when other industrial and commercial development activity is added to the calculation. A revised EIR must be prepared to include an accurate cumulative analysis on this topic and include a finding of significance.

00

pp

qq

6.0 Alternatives

The EIR is required to evaluate a reasonable range of alternatives to the proposed project which will avoid or substantially lessen any of the significant effects of the project (CEQA § 15126.6.) The alternatives chosen for analysis include the CEQA required "No Project/No Build" alternative and only two others - No Project/Existing General Plan Alternative and Reduced Intensity Alternative. The EIR does not evaluate a reasonable range of alternatives as only two alternatives beyond the required No Project alternative is analyzed. Additionally, the No Project/Existing General Plan Alternative results in the same quantity and type of development as the proposed project, which is erroneous as shown above the existing MU-GP designation on the southern portion of the site permits the development of 1,240 dwelling units. This alternative is an "alternative" to the proposed project in name only and does not actually implement any alternative development that is not included in the proposed project. The EIR has actually only analyzed 1 alternative development scenario as the No Project/Existing General Plan Alternative serves to mislead the public and decision makers and must be removed from the EIR. The EIR must be revised to include analysis of a reasonable range of alternatives and foster informed decision making (CEQA § 15126.6). This could include alternatives such as development of the site with a mixed-use project that provides affordable housing and local-serving commercial uses that may reduce VMT, GHG emissions, and improve Air Quality.

Conclusion

For the foregoing reasons, GSEJA believes the EIR is flawed and a revised EIR must be prepared for the proposed project and circulated for public review. Golden State Environmental Justice Alliance requests to be added to the public interest list regarding any subsequent environmental documents, public notices, public hearings, and notices of determination for this project. Send all communications to Golden State Environmental Justice Alliance P.O. Box 79222 Corona, CA 92877.

Sincerely,

Gary Ho Blum, Collins & Ho LLP

Attachments:

1. SWAPE Technical Analysis

rr

SS

2656 29th Street, Suite 201 Santa Monica, CA 90405

Matt Hagemann, P.G, C.Hg. (949) 887-9013 mhagemann@swape.com

> Paul E. Rosenfeld, PhD (310) 795-2335 prosenfeld@swape.com

February 6, 2024

Gary Ho Blum, Collins & Ho LLP 707 Wilshire Blvd, Ste. 4880 Los Angeles, CA 90017

Subject: Comments on the Euclid Mixed Use Specific Plan Project (SCH No. 2023020281)

Dear Mr. Ho,

We have reviewed the December 2023 Draft Environmental Impact Report ("DEIR") for the Euclid Mixed Use Specific Plan ("Project") located in the City of Ontario ("City"). The Project proposes to construct 290,110-square-feet ("SF") of commercial retail/office uses, 466 residential units, and 1,386,777-SF of business park uses on an 84.1-acre site.

Our review concludes that the DEIR fails to adequately evaluate the Project's air quality impacts. As a result, emissions and health risk impacts associated with construction and operation of the proposed Project may be underestimated and inadequately addressed. A revised Environmental Impact Report ("EIR") should be prepared to adequately assess and mitigate the air quality impacts that the project may have on the environment.

Air Quality

Failure to Implement All Feasible Mitigation to Reduce Emissions

The DEIR concludes that the Project's operational air quality emissions would be significant-and-unavoidable. Specifically, the DEIR estimates that the Project's operational VOC and NO_x, emissions would exceed the applicable South Coast Air Quality Management District ("SCAQMD") thresholds (see excerpts below) (p. 4.3-20, Table 4.3-8).

Table 4.3-8: Phase I - Maximum Daily Construction-Related Emissions

Construction Year	Maximum Pounds Per Day					
	Reactive Organic Gases (ROG)	Nitrogen Oxides (NO _A)	Carbon Monoxide (CO)	Suffur Dioxide (SO ₂)	Coarse Particulate Matter (PM ₁₀	Fine Particulate Matter (PM _E)
	58 0	Unmitigate	d Emissions ¹		8	S
Year 2023	4.04	39.80	37.10	0.06	7.14	4.34
Year 2024	9.43	62.60	85.90	0.14	12.30	4.99
Year 2025	3.20	17.90	48.80	0.06	7.40	2.15
SCAQMD Threshold	75	100	550	150	55	150
Exceed SCAQMD Threshold?	No	No	No	No	No	No

^{1.3.3.}Cuthor flow do or 'registre' taxe: appriete. The rules and 'reactivity registre' is noticed the introduction social principle and the construction equipment, water exposed surfaces three times daily, and limit speeds on unpawed roads to 15 miles and their construction percentages from the SCACIMO CEQA Handbook (Tables XiA through Xi-E) were applied. No mitigation was applied to construction equipment. Refer to Appendix B 16 for Model Data Outputs.

Source: CalEEMod version 2022.1. Refer to Appendix 81 for model outputs.

Even with the implementation of mitigation measures, the DEIR concludes that the Project's operational air quality impacts would be significant-and-unavoidable. Specially, the DEIR states:

"As shown in Table 4.3-8, Table 4.3-9, Table 4.3-10, Table 4.3-11, and Table 4.3-12; construction and operation of the Project would result in air pollutant emissions that exceed SCAQMD's emission thresholds. The implementation of SC AQ-1 and MMs AQ-1 through AQ-7 would reduce Project emissions by the greatest amount feasible; however, operation related Project emissions would remain significant and would potentially contribute to the O3, NO2, PM10, and PM2.5 nonattainment designations of the SCAB. Therefore, the Project would result in a significant and unavoidable impact" (p. 4.3-26).

While we agree that the Project would result in significant air quality impacts, the DEIR's assertion that this impact is significant-and-unavoidable is unreliable. According to CEQA Guidelines § 15096(g)(2):

"When an updated EIR has been prepared for a project, the Responsible Agency shall not approve the project as proposed if the agency finds any feasible alternative or feasible mitigation measures within its powers that would substantially lessen or avoid any significant effect the project would have on the environment." 1

The DEIR is required under CEQA to implement all feasible mitigation to reduce impacts to a less-than-significant level. While the DEIR implements Mitigation Measure ("MM") AQ-1 through MM-AQ-8, the DEIR fails to implement *all* feasible mitigation (Table 1-1, p. 1-8 –1-11). Therefore, the DEIR's conclusion that Project's air quality emissions would be significant-and-unavoidable may be unsubstantiated. To reduce the Project's air quality impacts to the maximum extent possible, additional feasible mitigation measures should be incorporated, such as those suggested in the section of this letter titled "Feasible Mitigation Measures Available to Reduce Emissions." The Project should not be approved until a revised

^{2.} diagnost incubes site inclupredation in memory, and miss sequence of program on the format of program of the AQL Requires of Tool equipment 50 formationer or greater to meet CARD Tier 4 fails standards. MMA 4CL and MM AQL and on the regular for the decision of the contraction reductions have not been included in Fable 4.3-8 for informational pumpoes.

¹ "Cal. Code Regs. tit. 14 § 15096." California Legislature, available at: <a href="https://casetext.com/regulation/california-code-of-regulations/title-14-natural-resources/division-6-resources-agency/chapter-3-guidelines-for-implementation-of-the-california-environmental-quality-act/article-7-eir-process/section-15096-process-for-a-responsible-agency.

EIR is prepared, incorporating all feasible mitigation to reduce emissions to the maximum extent feasible.

Mitigation

Feasible Mitigation Measures Available to Reduce Emissions

Our analysis demonstrates that the Project would result in potentially significant air quality that should be mitigated further. In an effort to reduce the Project's emissions, we identified several mitigation measures that are applicable to the proposed Project. To reduce the Project's emissions, we recommend consideration of SCAG's 2020 RTP/SCS PEIR's Air Quality Project Level Mitigation Measures ("PMM-AQ-1"), as described below: ²

SCAG RTP/SCS 2020-2045

Air Quality Project Level Mitigation Measures - PMM-AQ-1:

In accordance with provisions of sections 15091(a)(2) and 15126.4(a)(1)(B) of the State CEQA Guidelines, a Lead Agency for a project can and should consider mitigation measures to reduce substantial adverse effects related to violating air quality standards. Such measures may include the following or other comparable measures identified by the Lead Agency:

- a) Minimize land disturbance.
- b) Suspend grading and earth moving when wind gusts exceed 25 miles per hour unless the soil is wet enough to prevent dust plumes.
- c) Cover trucks when hauling dirt.
- d) Stabilize the surface of dirt piles if not removed immediately.
- h) Revegetate disturbed land, including vehicular paths created during construction to avoid future off-road vehicular activities.
- j) Require contractors to assemble a comprehensive inventory list (i.e., make, model, engine year, horsepower, emission rates) of all heavy-duty off-road (portable and mobile) equipment (50 horsepower and greater) that could be used an aggregate of 40 or more hours for the construction project. Prepare a plan for approval by the applicable air district demonstrating achievement of the applicable percent reduction for a CARB-approved fleet.
- k) Ensure that all construction equipment is properly tuned and maintained.
- m) Provide an operational water truck on-site at all times. Use watering trucks to minimize dust; watering should be sufficient to confine dust plumes to the project work areas. Sweep paved streets at least once per day where there is evidence of dirt that has been carried on to the roadway.
- n) Utilize existing power sources (e.g., power poles) or clean fuel generators rather than temporary power generators.

² "4.0 Mitigation Measures." Connect SoCal Program Environmental Impact Report Addendum #1, September 2020, available at: https://scag.ca.gov/sites/main/files/file-

attachments/fpeir connectsocal addendum 4 mitigationmeasures.pdf?1606004420, p. 4.0-2 – 4.0-10; 4.0-19 – 4.0-23; See also: "Certified Final Connect SoCal Program Environmental Impact Report." Southern California Association of Governments (SCAG), May 2020, available at: https://scag.ca.gov/peir.

- o) Develop a traffic plan to minimize traffic flow interference from construction activities. The plan may include advance public notice of routing, use of public transportation, and satellite parking areas with a shuttle service. Schedule operations affecting traffic for off-peak hours. Minimize obstruction of through-traffic lanes. Provide a flag person to guide traffic properly and ensure safety at construction sites.
- p) As appropriate require that portable engines and portable engine-driven equipment units used at the project work site, with the exception of on-road and off-road motor vehicles, obtain CARB Portable Equipment Registration with the state or a local district permit. Arrange appropriate consultations with the CARB or the District to determine registration and permitting requirements prior to equipment operation at the site.
- q) Require projects within 500 feet of residences, hospitals, or schools to use Tier 4 equipment for all engines above 50 horsepower (hp) unless the individual project can demonstrate that Tier 4 engines would not be required to mitigate emissions below significance thresholds.
- r) Projects located within the South Coast Air Basin should consider applying for South Coast AQMD "SOON" funds which provides funds to applicable fleets for the purchase of commercially available low-emission heavy-duty engines to achieve near-term reduction of NOx emissions from in-use off-road diesel vehicles.
- s) Projects located within AB 617 communities should review the applicable Community Emissions Reduction Plan (CERP) for additional mitigation that can be applied to individual projects.
- t) Where applicable, projects should provide information about air quality related programs to schools, including the Environmental Justice Community Partnerships (EJCP), Clean Air Ranger Education (CARE), and Why Air Quality Matters programs.
- u) Projects should work with local cities and counties to install adequate signage that prohibits truck idling in certain locations (e.g., near schools and sensitive receptors).
- y) Projects that will introduce sensitive receptors within 500 feet of freeways and other sources should consider installing high efficiency of enhanced filtration units, such as Minimum Efficiency Reporting Value (MERV) 13 or better. Installation of enhanced filtration units can be verified during occupancy inspection prior to the issuance of an occupancy permit.
- z) Develop an ongoing monitoring, inspection, and maintenance program for the MERV filters.
- aa) Consult the SCAG Environmental Justice Toolbox for potential measures to address impacts to low-income and/or minority communities.
- bb) The following criteria related to diesel emissions shall be implemented on by individual project sponsors as appropriate and feasible:
 - Diesel nonroad vehicles on site for more than 10 total days shall have either (1) engines that meet EPA
 on road emissions standards or (2) emission control technology verified by EPA or CARB to reduce PM
 emissions by a minimum of 85%
 - Diesel generators on site for more than 10 total days shall be equipped with emission control technology verified by EPA or CARB to reduce PM emissions by a minimum of 85%.
 - Nonroad diesel engines on site shall be Tier 2 or higher.
 - Diesel nonroad construction equipment on site for more than 10 total days shall have either (1) engines meeting EPA Tier 4 nonroad emissions standards or (2) emission control technology verified by EPA or CARB for use with nonroad engines to reduce PM emissions by a minimum of 85% for engines for 50 hp and greater and by a minimum of 20% for engines less than 50 hp.
 - Emission control technology shall be operated, maintained, and serviced as recommended by the emission control technology manufacturer.
 - Diesel vehicles, construction equipment, and generators on site shall be fueled with ultra-low sulfur diesel fuel (ULSD) or a biodiesel blend approved by the original engine manufacturer with sulfur content of 15 ppm or less.
 - The construction contractor shall maintain a list of all diesel vehicles, construction equipment, and generators to be used on site. The list shall include the following:
 - Contractor and subcontractor name and address, plus contact person responsible for the vehicles or equipment.

4

- Equipment type, equipment manufacturer, equipment serial number, engine manufacturer, engine model year, engine certification (Tier rating), horsepower, engine serial number, and expected fuel usage and hours of operation.
- For the emission control technology installed: technology type, serial number, make, model, manufacturer, EPA/CARB verification number/level, and installation date and hour-meter reading on installation date.
- The contractor shall establish generator sites and truck-staging zones for vehicles waiting to load or unload material on site. Such zones shall be located where diesel emissions have the least impact on abutters, the general public, and especially sensitive receptors such as hospitals, schools, daycare facilities, elderly housing, and convalescent facilities.
- The contractor shall maintain a monthly report that, for each on road diesel vehicle, nonroad construction equipment, or generator onsite, includes:
 - Hour-meter readings on arrival on-site, the first and last day of every month, and on off-site date
 - ii. Any problems with the equipment or emission controls.
 - iii. Certified copies of fuel deliveries for the time period that identify:
 - 1. Source of supply
 - 2. Quantity of fuel
 - 3. Quantity of fuel, including sulfur content (percent by weight)

These measures offer a cost-effective, feasible way to incorporate lower-emitting design features into the proposed Project, which subsequently, reduce emissions released during Project construction and operation.

As it is policy of the State that eligible renewable energy resources and zero-carbon resources supply 100% of retail sales of electricity to California end-use customers by December 31, 2045, we emphasize that the energy mix that will charge the batteries and power electrical equipment must be 100% renewable energy resources. Until the feasibility of charging the batteries with renewable energy resources only is evaluated, the Project should not be approved.

A revised EIR should be prepared to include all feasible mitigation measures, as well as include updated air quality, health risk, and GHG analyses to ensure that the necessary mitigation measures are implemented to reduce emissions to the maximum extent feasible. The revised EIR should also demonstrate a commitment to the implementation of these measures prior to Project approval, to ensure that the Project's significant emissions are reduced to the maximum extent possible.

Disclaimer

SWAPE has received limited discovery regarding this project. Additional information may become available in the future; thus, we retain the right to revise or amend this report when additional information becomes available. Our professional services have been performed using that degree of care and skill ordinarily exercised, under similar circumstances, by reputable environmental consultants practicing in this or similar localities at the time of service. No other warranty, expressed or implied, is made as to the scope of work, work methodologies and protocols, site conditions, analytical testing results, and findings presented. This report reflects efforts which were limited to information that was reasonably accessible at the time of the work, and may contain informational gaps, inconsistencies, or otherwise be incomplete due to the unavailability or uncertainty of information obtained or provided by third parties.

Sincerely,

M Huxuu Matt Hagemann, P.G., C.Hg.

Paul E. Rosenfeld, Ph.D.

Attachment A: Matt Hagemann CV Attachment B: Paul Rosenfeld CV

Attachment A

2656 29th Street, Suite 201 Santa Monica, CA 90405

Matt Hagemann, P.G, C.Hg. (949) 887-9013 mhagemann@swape.com

Matthew F. Hagemann, P.G., C.Hg., QSD, QSP

Geologic and Hydrogeologic Characterization Investigation and Remediation Strategies Litigation Support and Testifying Expert Industrial Stormwater Compliance CEQA Review

Education:

M.S. Degree, Geology, California State University Los Angeles, Los Angeles, CA, 1984. B.A. Degree, Geology, Humboldt State University, Arcata, CA, 1982.

Professional Certifications:

California Professional Geologist California Certified Hydrogeologist Qualified SWPPP Developer and Practitioner

Professional Experience:

Matt has 30 years of experience in environmental policy, contaminant assessment and remediation, stormwater compliance, and CEQA review. He spent nine years with the U.S. EPA in the RCRA and Superfund programs and served as EPA's Senior Science Policy Advisor in the Western Regional Office where he identified emerging threats to groundwater from perchlorate and MTBE. While with EPA, Matt also served as a Senior Hydrogeologist in the oversight of the assessment of seven major military facilities undergoing base closure. He led numerous enforcement actions under provisions of the Resource Conservation and Recovery Act (RCRA) and directed efforts to improve hydrogeologic characterization and water quality monitoring. For the past 15 years, as a founding partner with SWAPE, Matt has developed extensive client relationships and has managed complex projects that include consultation as an expert witness and a regulatory specialist, and a manager of projects ranging from industrial stormwater compliance to CEQA review of impacts from hazardous waste, air quality and greenhouse gas emissions.

Positions Matt has held include:

- Founding Partner, Soil/Water/Air Protection Enterprise (SWAPE) (2003 present);
- Geology Instructor, Golden West College, 2010 2104, 2017;
- Senior Environmental Analyst, Komex H2O Science, Inc. (2000 -- 2003);

- Executive Director, Orange Coast Watch (2001 2004);
- Senior Science Policy Advisor and Hydrogeologist, U.S. Environmental Protection Agency (1989– 1998);
- Hydrogeologist, National Park Service, Water Resources Division (1998 2000);
- Adjunct Faculty Member, San Francisco State University, Department of Geosciences (1993 1998);
- Instructor, College of Marin, Department of Science (1990 1995);
- Geologist, U.S. Forest Service (1986 1998); and
- Geologist, Dames & Moore (1984 1986).

Senior Regulatory and Litigation Support Analyst:

With SWAPE, Matt's responsibilities have included:

- Lead analyst and testifying expert in the review of over 300 environmental impact reports
 and negative declarations since 2003 under CEQA that identify significant issues with regard
 to hazardous waste, water resources, water quality, air quality, greenhouse gas emissions,
 and geologic hazards. Make recommendations for additional mitigation measures to lead
 agencies at the local and county level to include additional characterization of health risks
 and implementation of protective measures to reduce worker exposure to hazards from
 toxins and Valley Fever.
- Stormwater analysis, sampling and best management practice evaluation at more than 100 industrial facilities.
- Expert witness on numerous cases including, for example, perfluorooctanoic acid (PFOA)
 contamination of groundwater, MTBE litigation, air toxins at hazards at a school, CERCLA
 compliance in assessment and remediation, and industrial stormwater contamination.
- Technical assistance and litigation support for vapor intrusion concerns.
- Lead analyst and testifying expert in the review of environmental issues in license applications for large solar power plants before the California Energy Commission.
- Manager of a project to evaluate numerous formerly used military sites in the western U.S.
- Manager of a comprehensive evaluation of potential sources of perchlorate contamination in Southern California drinking water wells.
- Manager and designated expert for litigation support under provisions of Proposition 65 in the review of releases of gasoline to sources drinking water at major refineries and hundreds of gas stations throughout California.

With Komex H2O Science Inc., Matt's duties included the following:

- Senior author of a report on the extent of perchlorate contamination that was used in testimony by the former U.S. EPA Administrator and General Counsel.
- Senior researcher in the development of a comprehensive, electronically interactive chronology of MTBE use, research, and regulation.
- Senior researcher in the development of a comprehensive, electronically interactive chronology
 of perchlorate use, research, and regulation.
- Senior researcher in a study that estimates nationwide costs for MTBE remediation and drinking
 water treatment, results of which were published in newspapers nationwide and in testimony
 against provisions of an energy bill that would limit liability for oil companies.
- Research to support litigation to restore drinking water supplies that have been contaminated by MTBE in California and New York.

- Expert witness testimony in a case of oil production-related contamination in Mississippi.
- Lead author for a multi-volume remedial investigation report for an operating school in Los Angeles that met strict regulatory requirements and rigorous deadlines.
- Development of strategic approaches for cleanup of contaminated sites in consultation with clients and regulators.

Executive Director:

As Executive Director with Orange Coast Watch, Matt led efforts to restore water quality at Orange County beaches from multiple sources of contamination including urban runoff and the discharge of wastewater. In reporting to a Board of Directors that included representatives from leading Orange County universities and businesses, Matt prepared issue papers in the areas of treatment and disinfection of wastewater and control of the discharge of grease to sewer systems. Matt actively participated in the development of countywide water quality permits for the control of urban runoff and permits for the discharge of wastewater. Matt worked with other nonprofits to protect and restore water quality, including Surfrider, Natural Resources Defense Council and Orange County CoastKeeper as well as with business institutions including the Orange County Business Council.

Hydrogeology:

As a Senior Hydrogeologist with the U.S. Environmental Protection Agency, Matt led investigations to characterize and cleanup closing military bases, including Mare Island Naval Shipyard, Hunters Point Naval Shipyard, Treasure Island Naval Station, Alameda Naval Station, Moffett Field, Mather Army Airfield, and Sacramento Army Depot. Specific activities were as follows:

- Led efforts to model groundwater flow and contaminant transport, ensured adequacy of monitoring networks, and assessed cleanup alternatives for contaminated sediment, soil, and groundwater.
- Initiated a regional program for evaluation of groundwater sampling practices and laboratory analysis at military bases.
- Identified emerging issues, wrote technical guidance, and assisted in policy and regulation development through work on four national U.S. EPA workgroups, including the Superfund Groundwater Technical Forum and the Federal Facilities Forum.

At the request of the State of Hawaii, Matt developed a methodology to determine the vulnerability of groundwater to contamination on the islands of Maui and Oahu. He used analytical models and a GIS to show zones of vulnerability, and the results were adopted and published by the State of Hawaii and County of Maui.

As a hydrogeologist with the EPA Groundwater Protection Section, Matt worked with provisions of the Safe Drinking Water Act and NEPA to prevent drinking water contamination. Specific activities included the following:

- Received an EPA Bronze Medal for his contribution to the development of national guidance for the protection of drinking water.
- Managed the Sole Source Aquifer Program and protected the drinking water of two communities through designation under the Safe Drinking Water Act. He prepared geologic reports, conducted

- public hearings, and responded to public comments from residents who were very concerned about the impact of designation.
- Reviewed a number of Environmental Impact Statements for planned major developments, including large hazardous and solid waste disposal facilities, mine reclamation, and water transfer.

Matt served as a hydrogeologist with the RCRA Hazardous Waste program. Duties were as follows:

- Supervised the hydrogeologic investigation of hazardous waste sites to determine compliance with Subtitle C requirements.
- Reviewed and wrote "part B" permits for the disposal of hazardous waste.
- Conducted RCRA Corrective Action investigations of waste sites and led inspections that formed
 the basis for significant enforcement actions that were developed in close coordination with U.S.
 EPA legal counsel.
- Wrote contract specifications and supervised contractor's investigations of waste sites.

With the National Park Service, Matt directed service-wide investigations of contaminant sources to prevent degradation of water quality, including the following tasks:

- Applied pertinent laws and regulations including CERCLA, RCRA, NEPA, NRDA, and the Clean Water Act to control military, mining, and landfill contaminants.
- Conducted watershed-scale investigations of contaminants at parks, including Yellowstone and Olympic National Park.
- Identified high-levels of perchlorate in soil adjacent to a national park in New Mexico and advised park superintendent on appropriate response actions under CERCLA.
- Served as a Park Service representative on the Interagency Perchlorate Steering Committee, a national workgroup.
- Developed a program to conduct environmental compliance audits of all National Parks while serving on a national workgroup.
- Co-authored two papers on the potential for water contamination from the operation of personal
 watercraft and snowmobiles, these papers serving as the basis for the development of nationwide policy on the use of these vehicles in National Parks.
- Contributed to the Federal Multi-Agency Source Water Agreement under the Clean Water Action Plan.

Policy:

Served senior management as the Senior Science Policy Advisor with the U.S. Environmental Protection Agency, Region 9.

Activities included the following:

- Advised the Regional Administrator and senior management on emerging issues such as the
 potential for the gasoline additive MTBE and ammonium perchlorate to contaminate drinking
 water supplies.
- Shaped EPA's national response to these threats by serving on workgroups and by contributing
 to guidance, including the Office of Research and Development publication, Oxygenates in
 Water: Critical Information and Research Needs.
- Improved the technical training of EPA's scientific and engineering staff.
- Earned an EPA Bronze Medal for representing the region's 300 scientists and engineers in negotiations with the Administrator and senior management to better integrate scientific

principles into the policy-making process.

Established national protocol for the peer review of scientific documents.

Geology:

With the U.S. Forest Service, Matt led investigations to determine hillslope stability of areas proposed for timber harvest in the central Oregon Coast Range. Specific activities were as follows:

- Mapped geology in the field, and used aerial photographic interpretation and mathematical models to determine slope stability.
- Coordinated his research with community members who were concerned with natural resource protection.
- Characterized the geology of an aquifer that serves as the sole source of drinking water for the city of Medford, Oregon.

As a consultant with Dames and Moore, Matt led geologic investigations of two contaminated sites (later listed on the Superfund NPL) in the Portland, Oregon, area and a large hazardous waste site in eastern Oregon. Duties included the following:

- · Supervised year-long effort for soil and groundwater sampling.
- · Conducted aquifer tests.
- · Investigated active faults beneath sites proposed for hazardous waste disposal.

Teaching:

From 1990 to 1998, Matt taught at least one course per semester at the community college and university levels:

- At San Francisco State University, held an adjunct faculty position and taught courses in environmental geology, oceanography (lab and lecture), hydrogeology, and groundwater contamination
- · Served as a committee member for graduate and undergraduate students.
- Taught courses in environmental geology and oceanography at the College of Marin.

Matt is currently a part time geology instructor at Golden West College in Huntington Beach, California where he taught from 2010 to 2014 and in 2017.

Invited Testimony, Reports, Papers and Presentations:

Hagemann, M.F., 2008. Disclosure of Hazardous Waste Issues under CEQA. Presentation to the Public Environmental Law Conference, Eugene, Oregon.

Hagemann, M.F., 2008. Disclosure of Hazardous Waste Issues under CEQA. Invited presentation to U.S. EPA Region 9, San Francisco, California.

Hagemann, M.F., 2005. Use of Electronic Databases in Environmental Regulation, Policy Making and Public Participation. Brownfields 2005, Denver, Coloradao.

Hagemann, M.F., 2004. Perchlorate Contamination of the Colorado River and Impacts to Drinking Water in Nevada and the Southwestern U.S. Presentation to a meeting of the American Groundwater Trust, Las Vegas, NV (served on conference organizing committee).

Hagemann, M.F., 2004. Invited testimony to a California Senate committee hearing on air toxins at schools in Southern California, Los Angeles.

Brown, A., Farrow, J., Gray, A. and **Hagemann, M.**, 2004. An Estimate of Costs to Address MTBE Releases from Underground Storage Tanks and the Resulting Impact to Drinking Water Wells. Presentation to the Ground Water and Environmental Law Conference, National Groundwater Association.

Hagemann, M.F., 2004. Perchlorate Contamination of the Colorado River and Impacts to Drinking Water in Arizona and the Southwestern U.S. Presentation to a meeting of the American Groundwater Trust, Phoenix, AZ (served on conference organizing committee).

Hagemann, M.F., 2003. Perchlorate Contamination of the Colorado River and Impacts to Drinking Water in the Southwestern U.S. Invited presentation to a special committee meeting of the National Academy of Sciences, Irvine, CA.

Hagemann, M.F., 2003. Perchlorate Contamination of the Colorado River. Invited presentation to a tribal EPA meeting, Pechanga, CA.

Hagemann, M.F., 2003. Perchlorate Contamination of the Colorado River. Invited presentation to a meeting of tribal repesentatives, Parker, AZ.

Hagemann, M.F., 2003. Impact of Perchlorate on the Colorado River and Associated Drinking Water Supplies. Invited presentation to the Inter-Tribal Meeting, Torres Martinez Tribe.

Hagemann, M.F., 2003. The Emergence of Perchlorate as a Widespread Drinking Water Contaminant. Invited presentation to the U.S. EPA Region 9.

Hagemann, M.F., 2003. A Deductive Approach to the Assessment of Perchlorate Contamination. Invited presentation to the California Assembly Natural Resources Committee.

Hagemann, M.F., 2003. Perchlorate: A Cold War Legacy in Drinking Water. Presentation to a meeting of the National Groundwater Association.

Hagemann, M.F., 2002. From Tank to Tap: A Chronology of MTBE in Groundwater. Presentation to a meeting of the National Groundwater Association.

Hagemann, M.F., 2002. A Chronology of MTBE in Groundwater and an Estimate of Costs to Address Impacts to Groundwater. Presentation to the annual meeting of the Society of Environmental Journalists.

Hagemann, M.F., 2002. An Estimate of the Cost to Address MTBE Contamination in Groundwater (and Who Will Pay). Presentation to a meeting of the National Groundwater Association.

Hagemann, M.F., 2002. An Estimate of Costs to Address MTBE Releases from Underground Storage Tanks and the Resulting Impact to Drinking Water Wells. Presentation to a meeting of the U.S. EPA and State Underground Storage Tank Program managers.

Hagemann, M.F., 2001. From Tank to Tap: A Chronology of MTBE in Groundwater. Unpublished report.

Hagemann, M.F., 2001. Estimated Cleanup Cost for MTBE in Groundwater Used as Drinking Water. Unpublished report.

Hagemann, M.F., 2001. Estimated Costs to Address MTBE Releases from Leaking Underground Storage Tanks. Unpublished report.

Hagemann, M.F., and VanMouwerik, M., 1999. Potential Water Quality Concerns Related to Snowmobile Usage. Water Resources Division, National Park Service, Technical Report.

VanMouwerik, M. and **Hagemann**, M.F. 1999, Water Quality Concerns Related to Personal Watercraft Usage. Water Resources Division, National Park Service, Technical Report.

Hagemann, M.F., 1999, Is Dilution the Solution to Pollution in National Parks? The George Wright Society Biannual Meeting, Asheville, North Carolina.

Hagemann, M.F., 1997, The Potential for MTBE to Contaminate Groundwater. U.S. EPA Superfund Groundwater Technical Forum Annual Meeting, Las Vegas, Nevada.

Hagemann, M.F., and Gill, M., 1996, Impediments to Intrinsic Remediation, Moffett Field Naval Air Station, Conference on Intrinsic Remediation of Chlorinated Hydrocarbons, Salt Lake City.

Hagemann, M.F., Fukunaga, G.L., 1996, The Vulnerability of Groundwater to Anthropogenic Contaminants on the Island of Maui, Hawaii Water Works Association Annual Meeting, Maui, October 1996.

Hagemann, M. F., Fukanaga, G. L., 1996, Ranking Groundwater Vulnerability in Central Oahu, Hawaii. Proceedings, Geographic Information Systems in Environmental Resources Management, Air and Waste Management Association Publication VIP-61.

Hagemann, M.F., 1994. Groundwater Characterization and Cleanup at Closing Military Bases in California. Proceedings, California Groundwater Resources Association Meeting.

Hagemann, M.F. and Sabol, M.A., 1993. Role of the U.S. EPA in the High Plains States Groundwater Recharge Demonstration Program. Proceedings, Sixth Biennial Symposium on the Artificial Recharge of Groundwater.

Hagemann, M.F., 1993. U.S. EPA Policy on the Technical Impracticability of the Cleanup of DNAPL-contaminated Groundwater. California Groundwater Resources Association Meeting.

Hagemann, M.F., 1992. Dense Nonaqueous Phase Liquid Contamination of Groundwater: An Ounce of Prevention... Proceedings, Association of Engineering Geologists Annual Meeting, v. 35.

Other Experience:

Selected as subject matter expert for the California Professional Geologist licensing examinations, 2009-2011.

Attachment B

SOIL WATER AIR PROTECTION ENTERPRISE

2656 29th Street, Suite 201
Santa Monica, California 90405
Attn: Paul Rosenfeld, Ph.D.
Mobil: (310) 795-2335
Office: (310) 452-5555
Fax: (310) 452-5555
Email: prosenfeld@swape.com

Paul Rosenfeld, Ph.D.

Chemical Fate and Transport & Air Dispersion Modeling

Principal Environmental Chemist

Risk Assessment & Remediation Specialist

Education

Ph.D. Soil Chemistry, University of Washington, 1999. Dissertation on volatile organic compound filtration.

M.S. Environmental Science, U.C. Berkeley, 1995. Thesis on organic waste economics.

B.A. Environmental Studies, U.C. Santa Barbara, 1991. Focus on wastewater treatment.

Professional Experience

Dr. Rosenfeld has over 25 years of experience conducting environmental investigations and risk assessments for evaluating impacts to human health, property, and ecological receptors. His expertise focuses on the fate and transport of environmental contaminants, human health risk, exposure assessment, and ecological restoration. Dr. Rosenfeld has evaluated and modeled emissions from oil spills, landfills, boilers and incinerators, process stacks, storage tanks, confined animal feeding operations, industrial, military and agricultural sources, unconventional oil drilling operations, and locomotive and construction engines. His project experience ranges from monitoring and modeling of pollution sources to evaluating impacts of pollution on workers at industrial facilities and residents in surrounding communities. Dr. Rosenfeld has also successfully modeled exposure to contaminants distributed by water systems and via vapor intrusion.

Dr. Rosenfeld has investigated and designed remediation programs and risk assessments for contaminated sites containing lead, heavy metals, mold, bacteria, particulate matter, petroleum hydrocarbons, chlorinated solvents, pesticides, radioactive waste, dioxins and furans, semi- and volatile organic compounds, PCBs, PAHs, creosote, perchlorate, asbestos, per- and poly-fluoroalkyl substances (PFOA/PFOS), unusual polymers, fuel oxygenates (MTBE), among other pollutants. Dr. Rosenfeld also has experience evaluating greenhouse gas emissions from various projects and is an expert on the assessment of odors from industrial and agricultural sites, as well as the evaluation of odor nuisance impacts and technologies for abatement of odorous emissions. As a principal scientist at SWAPE, Dr. Rosenfeld directs air dispersion modeling and exposure assessments. He has served as an expert witness and testified about pollution sources causing nuisance and/or personal injury at sites and has testified as an expert witness on numerous cases involving exposure to soil, water and air contaminants from industrial, railroad, agricultural, and military sources.

Paul E. Rosenfeld, Ph.D. Page 1 of 12 October 2022

Professional History:

Soil Water Air Protection Enterprise (SWAPE); 2003 to present; Principal and Founding Partner

UCLA School of Public Health; 2007 to 2011; Lecturer (Assistant Researcher)

UCLA School of Public Health; 2003 to 2006; Adjunct Professor

UCLA Environmental Science and Engineering Program; 2002-2004; Doctoral Intern Coordinator

UCLA Institute of the Environment, 2001-2002; Research Associate

Komex H₂O Science, 2001 to 2003; Senior Remediation Scientist

National Groundwater Association, 2002-2004; Lecturer

San Diego State University, 1999-2001; Adjunct Professor

Anteon Corp., San Diego, 2000-2001; Remediation Project Manager

Ogden (now Amec), San Diego, 2000-2000; Remediation Project Manager

Bechtel, San Diego, California, 1999 - 2000; Risk Assessor

King County, Seattle, 1996 - 1999; Scientist

James River Corp., Washington, 1995-96; Scientist

Big Creek Lumber, Davenport, California, 1995; Scientist

Plumas Corp., California and USFS, Tahoe 1993-1995; Scientist

Peace Corps and World Wildlife Fund, St. Kitts, West Indies, 1991-1993; Scientist

Publications:

Rosenfeld P. E., Spaeth K., Hallman R., Bressler R., Smith, G., (2022) Cancer Risk and Diesel Exhaust Exposure Among Railroad Workers. *Water Air Soil Pollution.* 233, 171.

Remy, L.L., Clay T., Byers, V., Rosenfeld P. E. (2019) Hospital, Health, and Community Burden After Oil Refinery Fires, Richmond, California 2007 and 2012. *Environmental Health*. 18:48

Simons, R.A., Seo, Y. Rosenfeld, P., (2015) Modeling the Effect of Refinery Emission On Residential Property Value. Journal of Real Estate Research. 27(3):321-342

Chen, J. A, Zapata A. R., Sutherland A. J., Molmen, D.R., Chow, B. S., Wu, L. E., **Rosenfeld, P. E.,** Hesse, R. C., (2012) Sulfur Dioxide and Volatile Organic Compound Exposure To A Community In Texas City Texas Evaluated Using Aermod and Empirical Data. *American Journal of Environmental Science*, 8(6), 622-632.

Rosenfeld, P.E. & Feng, L. (2011). The Risks of Hazardous Waste. Amsterdam: Elsevier Publishing.

Cheremisinoff, N.P., & Rosenfeld, P.E. (2011). Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Agrochemical Industry, Amsterdam: Elsevier Publishing.

Gonzalez, J., Feng, L., Sutherland, A., Waller, C., Sok, H., Hesse, R., Rosenfeld, P. (2010). PCBs and Dioxins/Furans in Attic Dust Collected Near Former PCB Production and Secondary Copper Facilities in Sauget, IL. *Procedia Environmental Sciences*, 113–125.

Feng, L., Wu, C., Tam, L., Sutherland, A.J., Clark, J.J., Rosenfeld, P.E. (2010). Dioxin and Furan Blood Lipid and Attic Dust Concentrations in Populations Living Near Four Wood Treatment Facilities in the United States. *Journal of Environmental Health*. 73(6), 34-46.

Cheremisinoff, N.P., & Rosenfeld, P.E. (2010). Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Wood and Paper Industries. Amsterdam: Elsevier Publishing.

Cheremisinoff, N.P., & Rosenfeld, P.E. (2009). Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Petroleum Industry. Amsterdam: Elsevier Publishing.

Paul E. Rosenfeld, Ph.D. Page 2 of 12 October 2022

Wu, C., Tam, L., Clark, J., Rosenfeld, P. (2009). Dioxin and furan blood lipid concentrations in populations living near four wood treatment facilities in the United States. WIT Transactions on Ecology and the Environment, Air Pollution, 123 (17), 319-327.

Tam L. K.., Wu C. D., Clark J. J. and **Rosenfeld, P.E.** (2008). A Statistical Analysis Of Attic Dust And Blood Lipid Concentrations Of Tetrachloro-p-Dibenzodioxin (TCDD) Toxicity Equivalency Quotients (TEQ) In Two Populations Near Wood Treatment Facilities. *Organohalogen Compounds*, 70, 002252-002255.

Tam L. K.., Wu C. D., Clark J. J. and Rosenfeld, P.E. (2008). Methods For Collect Samples For Assessing Dioxins And Other Environmental Contaminants In Attic Dust: A Review. *Organohalogen Compounds*, 70, 000527-000530

Hensley, A.R. A. Scott, J. J. Clark, **Rosenfeld, P.E.** (2007). Attic Dust and Human Blood Samples Collected near a Former Wood Treatment Facility. *Environmental Research*. 105, 194-197.

Rosenfeld, P.E., J. J. Clark, A. R. Hensley, M. Suffet. (2007). The Use of an Odor Wheel Classification for Evaluation of Human Health Risk Criteria for Compost Facilities. *Water Science & Technology* 55(5), 345-357.

Rosenfeld, P. E., M. Suffet. (2007). The Anatomy Of Odour Wheels For Odours Of Drinking Water, Wastewater, Compost And The Urban Environment. *Water Science & Technology* 55(5), 335-344.

Sullivan, P. J. Clark, J.J.J., Agardy, F. J., Rosenfeld, P.E. (2007). Toxic Legacy, Synthetic Toxins in the Food, Water, and Air in American Cities. Boston Massachusetts: Elsevier Publishing

Rosenfeld, P.E., and Suffet I.H. (2004). Control of Compost Odor Using High Carbon Wood Ash. Water Science and Technology. 49(9),171-178.

Rosenfeld P. E., J.J. Clark, I.H. (Mel) Suffet (2004). The Value of An Odor-Quality-Wheel Classification Scheme For The Urban Environment. *Water Environment Federation's Technical Exhibition and Conference (WEFTEC)* 2004. New Orleans, October 2-6, 2004.

Rosenfeld, P.E., and Suffet, I.H. (2004). Understanding Odorants Associated With Compost, Biomass Facilities, and the Land Application of Biosolids. *Water Science and Technology*. 49(9), 193-199.

Rosenfeld, P.E., and Suffet I.H. (2004). Control of Compost Odor Using High Carbon Wood Ash, Water Science and Technology, 49(9), 171-178.

Rosenfeld, P. E., Grey, M. A., Sellew, P. (2004). Measurement of Biosolids Odor and Odorant Emissions from Windrows, Static Pile and Biofilter. *Water Environment Research*. 76(4), 310-315.

Rosenfeld, P.E., Grey, M and Suffet, M. (2002). Compost Demonstration Project, Sacramento California Using High-Carbon Wood Ash to Control Odor at a Green Materials Composting Facility. *Integrated Waste Management Board Public Affairs Office*, Publications Clearinghouse (MS–6), Sacramento, CA Publication #442-02-008.

Rosenfeld, P.E., and C.L. Henry. (2001). Characterization of odor emissions from three different biosolids. *Water Soil and Air Pollution*. 127(1-4), 173-191.

Rosenfeld, P.E., and Henry C. L., (2000). Wood ash control of odor emissions from biosolids application. *Journal of Environmental Quality*. 29, 1662-1668.

Rosenfeld, P.E., C.L. Henry and D. Bennett. (2001). Wastewater dewatering polymer affect on biosolids odor emissions and microbial activity. *Water Environment Research*. 73(4), 363-367.

Rosenfeld, P.E., and C.L. Henry. (2001). Activated Carbon and Wood Ash Sorption of Wastewater, Compost, and Biosolids Odorants. *Water Environment Research*, 73, 388-393.

Paul E. Rosenfeld, Ph.D. Page 3 of 12 October 2022

Rosenfeld, P.E., and Henry C. L., (2001). High carbon wood ash effect on biosolids microbial activity and odor. *Water Environment Research*. 131(1-4), 247-262.

Chollack, T. and P. Rosenfeld. (1998). Compost Amendment Handbook For Landscaping. Prepared for and distributed by the City of Redmond, Washington State.

Rosenfeld, P. E. (1992). The Mount Liamuiga Crater Trail. Heritage Magazine of St. Kitts, 3(2).

Rosenfeld, P. E. (1993). High School Biogas Project to Prevent Deforestation On St. Kitts. *Biomass Users Network*, 7(1).

Rosenfeld, P. E. (1998). Characterization, Quantification, and Control of Odor Emissions From Biosolids Application To Forest Soil. Doctoral Thesis. University of Washington College of Forest Resources.

Rosenfeld, P. E. (1994). Potential Utilization of Small Diameter Trees on Sierra County Public Land. Masters thesis reprinted by the Sierra County Economic Council. Sierra County, California.

Rosenfeld, P. E. (1991). How to Build a Small Rural Anaerobic Digester & Uses Of Biogas In The First And Third World. Bachelors Thesis. University of California.

Presentations:

Rosenfeld, P.E., "The science for Perfluorinated Chemicals (PFAS): What makes remediation so hard?" Law Seminars International, (May 9-10, 2018) 800 Fifth Avenue, Suite 101 Seattle, WA.

Rosenfeld, P.E., Sutherland, A; Hesse, R.; Zapata, A. (October 3-6, 2013). Air dispersion modeling of volatile organic emissions from multiple natural gas wells in Decatur, TX. 44th Western Regional Meeting, American Chemical Society. Lecture conducted from Santa Clara, CA.

Sok, H.L.; Waller, C.C.; Feng, L.; Gonzalez, J.; Sutherland, A.J.; Wisdom-Stack, T.; Sahai, R.K.; Hesse, R.C.; Rosenfeld, P.E. (June 20-23, 2010). Atrazine: A Persistent Pesticide in Urban Drinking Water. Urban Environmental Pollution. Lecture conducted from Boston, MA.

Feng, L.; Gonzalez, J.; Sok, H.L.; Sutherland, A.J.; Waller, C.C.; Wisdom-Stack, T.; Sahai, R.K.; La, M.; Hesse, R.C.; Rosenfeld, P.E. (June 20-23, 2010). Bringing Environmental Justice to East St. Louis, Illinois. *Urban Environmental Pollution*. Lecture conducted from Boston, MA.

Rosenfeld, P.E. (April 19-23, 2009). Perfluoroctanoic Acid (PFOA) and Perfluoroctane Sulfonate (PFOS) Contamination in Drinking Water From the Use of Aqueous Film Forming Foams (AFFF) at Airports in the United States. 2009 Ground Water Summit and 2009 Ground Water Protection Council Spring Meeting, Lecture conducted from Tuscon, AZ.

Rosenfeld, P.E. (April 19-23, 2009). Cost to Filter Atrazine Contamination from Drinking Water in the United States" Contamination in Drinking Water From the Use of Aqueous Film Forming Foams (AFFF) at Airports in the United States. 2009 Ground Water Summit and 2009 Ground Water Protection Council Spring Meeting. Lecture conducted from Tuscon. AZ.

Wu, C., Tam, L., Clark, J., Rosenfeld, P. (20-22 July, 2009). Dioxin and furan blood lipid concentrations in populations living near four wood treatment facilities in the United States. Brebbia, C.A. and Popov, V., eds., Air Pollution XVII: Proceedings of the Seventeenth International Conference on Modeling, Monitoring and Management of Air Pollution. Lecture conducted from Tallinn, Estonia.

Rosenfeld, P. E. (October 15-18, 2007). Moss Point Community Exposure To Contaminants From A Releasing Facility. *The 23rd Annual International Conferences on Soils Sediment and Water*. Platform lecture conducted from University of Massachusetts, Amherst MA.

Paul E. Rosenfeld, Ph.D. Page 4 of 12 October 2022

Rosenfeld, P. E. (October 15-18, 2007). The Repeated Trespass of Tritium-Contaminated Water Into A Surrounding Community Form Repeated Waste Spills From A Nuclear Power Plant. *The 23rd Annual International Conferences on Soils Sediment and Water*. Platform lecture conducted from University of Massachusetts, Amherst MA.

Rosenfeld, P. E. (October 15-18, 2007). Somerville Community Exposure To Contaminants From Wood Treatment Facility Emissions. The 23rd Annual International Conferences on Soils Sediment and Water. Lecture conducted from University of Massachusetts, Amherst MA.

Rosenfeld P. E. (March 2007). Production, Chemical Properties, Toxicology, & Treatment Case Studies of 1,2,3-Trichloropropane (TCP). *The Association for Environmental Health and Sciences (AEHS) Annual Meeting*. Lecture conducted from San Diego, CA.

Rosenfeld P. E. (March 2007). Blood and Attic Sampling for Dioxin/Furan, PAH, and Metal Exposure in Florala, Alabama. *The AEHS Annual Meeting*. Lecture conducted from San Diego, CA.

Hensley A.R., Scott, A., Rosenfeld P.E., Clark, J.J.J. (August 21 – 25, 2006). Dioxin Containing Attic Dust And Human Blood Samples Collected Near A Former Wood Treatment Facility. *The 26th International Symposium on Halogenated Persistent Organic Pollutants – DIOXIN2006*. Lecture conducted from Radisson SAS Scandinavia Hotel in Oslo Norway.

Hensley A.R., Scott, A., Rosenfeld P.E., Clark, J.J.J. (November 4-8, 2006). Dioxin Containing Attic Dust And Human Blood Samples Collected Near A Former Wood Treatment Facility. *APHA 134 Annual Meeting & Exposition*. Lecture conducted from Boston Massachusetts.

Paul Rosenfeld Ph.D. (October 24-25, 2005). Fate, Transport and Persistence of PFOA and Related Chemicals. Mealey's C8/PFOA. *Science, Risk & Litigation Conference*. Lecture conducted from The Rittenhouse Hotel, Philadelphia, PA.

Paul Rosenfeld Ph.D. (September 19, 2005). Brominated Flame Retardants in Groundwater: Pathways to Human Ingestion, *Toxicology and Remediation PEMA Emerging Contaminant Conference*. Lecture conducted from Hilton Hotel, Irvine California.

Paul Rosenfeld Ph.D. (September 19, 2005). Fate, Transport, Toxicity, And Persistence of 1,2,3-TCP. PEMA Emerging Contaminant Conference. Lecture conducted from Hilton Hotel in Irvine, California.

Paul Rosenfeld Ph.D. (September 26-27, 2005). Fate, Transport and Persistence of PDBEs. *Mealey's Groundwater Conference*. Lecture conducted from Ritz Carlton Hotel, Marina Del Ray, California.

Paul Rosenfeld Ph.D. (June 7-8, 2005). Fate, Transport and Persistence of PFOA and Related Chemicals. *International Society of Environmental Forensics: Focus On Emerging Contaminants*. Lecture conducted from Sheraton Oceanfront Hotel, Virginia Beach, Virginia.

Paul Rosenfeld Ph.D. (July 21-22, 2005). Fate Transport, Persistence and Toxicology of PFOA and Related Perfluorochemicals. 2005 National Groundwater Association Ground Water And Environmental Law Conference. Lecture conducted from Wyndham Baltimore Inner Harbor, Baltimore Maryland.

Paul Rosenfeld Ph.D. (July 21-22, 2005). Brominated Flame Retardants in Groundwater: Pathways to Human Ingestion, Toxicology and Remediation. 2005 National Groundwater Association Ground Water and Environmental Law Conference. Lecture conducted from Wyndham Baltimore Inner Harbor, Baltimore Maryland.

Paul Rosenfeld, Ph.D. and James Clark Ph.D. and Rob Hesse R.G. (May 5-6, 2004). Tert-butyl Alcohol Liability and Toxicology, A National Problem and Unquantified Liability. *National Groundwater Association. Environmental Law Conference*. Lecture conducted from Congress Plaza Hotel, Chicago Illinois.

Paul E. Rosenfeld, Ph.D. Page 5 of 12 October 2022

Paul Rosenfeld, Ph.D. (March 2004). Perchlorate Toxicology. Meeting of the American Groundwater Trust. Lecture conducted from Phoenix Arizona.

Hagemann, M.F., **Paul Rosenfeld, Ph.D.** and Rob Hesse (2004). Perchlorate Contamination of the Colorado River. *Meeting of tribal representatives*. Lecture conducted from Parker, AZ.

Paul Rosenfeld, Ph.D. (April 7, 2004). A National Damage Assessment Model For PCE and Dry Cleaners. Drycleaner Symposium. California Ground Water Association. Lecture conducted from Radison Hotel, Sacramento, California

Rosenfeld, P. E., Grey, M., (June 2003) Two stage biofilter for biosolids composting odor control. Seventh International In Situ And On Site Bioremediation Symposium Battelle Conference Orlando, FL.

Paul Rosenfeld, Ph.D. and James Clark Ph.D. (February 20-21, 2003) Understanding Historical Use, Chemical Properties, Toxicity and Regulatory Guidance of 1,4 Dioxane. *National Groundwater Association. Southwest Focus Conference. Water Supply and Emerging Contaminants.*. Lecture conducted from Hyatt Regency Phoenix Arizona.

Paul Rosenfeld, Ph.D. (February 6-7, 2003). Underground Storage Tank Litigation and Remediation. *California CUPA Forum*. Lecture conducted from Marriott Hotel, Anaheim California.

Paul Rosenfeld, Ph.D. (October 23, 2002) Underground Storage Tank Litigation and Remediation. *EPA Underground Storage Tank Roundtable*. Lecture conducted from Sacramento California.

Rosenfeld, P.E. and Suffet, M. (October 7- 10, 2002). Understanding Odor from Compost, Wastewater and Industrial Processes. Sixth Annual Symposium On Off Flavors in the Aquatic Environment. International Water Association. Lecture conducted from Barcelona Spain.

Rosenfeld, P.E. and Suffet, M. (October 7-10, 2002). Using High Carbon Wood Ash to Control Compost Odor. Sixth Annual Symposium On Off Flavors in the Aquatic Environment. International Water Association. Lecture conducted from Barcelona Spain.

Rosenfeld, P.E. and Grey, M. A. (September 22-24, 2002). Biocycle Composting For Coastal Sage Restoration. *Northwest Biosolids Management Association*. Lecture conducted from Vancouver Washington..

Rosenfeld, P.E. and Grey, M. A. (November 11-14, 2002). Using High-Carbon Wood Ash to Control Odor at a Green Materials Composting Facility. *Soil Science Society Annual Conference*. Lecture conducted from Indianapolis, Maryland.

Rosenfeld. P.E. (September 16, 2000). Two stage biofilter for biosolids composting odor control. Water Environment Federation. Lecture conducted from Anaheim California.

Rosenfeld. P.E. (October 16, 2000). Wood ash and biofilter control of compost odor. *Biofest*. Lecture conducted from Ocean Shores, California.

Rosenfeld, P.E. (2000). Bioremediation Using Organic Soil Amendments. California Resource Recovery Association. Lecture conducted from Sacramento California.

Rosenfeld, P.E., C.L. Henry, R. Harrison. (1998). Oat and Grass Seed Germination and Nitrogen and Sulfur Emissions Following Biosolids Incorporation With High-Carbon Wood-Ash. *Water Environment Federation 12th Annual Residuals and Biosolids Management Conference Proceedings*. Lecture conducted from Bellevue Washington.

Rosenfeld, P.E., and C.L. Henry. (1999). An evaluation of ash incorporation with biosolids for odor reduction. *Soil Science Society of America*. Lecture conducted from Salt Lake City Utah.

Paul E. Rosenfeld, Ph.D. Page 6 of 12 October 2022

Rosenfeld, P.E., C.L. Henry, R. Harrison. (1998). Comparison of Microbial Activity and Odor Emissions from Three Different Biosolids Applied to Forest Soil. *Brown and Caldwell*. Lecture conducted from Seattle Washington.

Rosenfeld, P.E., C.L. Henry. (1998). Characterization, Quantification, and Control of Odor Emissions from Biosolids Application To Forest Soil. *Biofest*. Lecture conducted from Lake Chelan, Washington.

Rosenfeld, P.E, C.L. Henry, R. Harrison. (1998). Oat and Grass Seed Germination and Nitrogen and Sulfur Emissions Following Biosolids Incorporation With High-Carbon Wood-Ash. Water Environment Federation 12th Annual Residuals and Biosolids Management Conference Proceedings. Lecture conducted from Bellevue Washington.

Rosenfeld, P.E., C.L. Henry, R. B. Harrison, and R. Dills. (1997). Comparison of Odor Emissions From Three Different Biosolids Applied to Forest Soil. *Soil Science Society of America*. Lecture conducted from Anaheim California.

Teaching Experience:

UCLA Department of Environmental Health (Summer 2003 through 20010) Taught Environmental Health Science 100 to students, including undergrad, medical doctors, public health professionals and nurses. Course focused on the health effects of environmental contaminants.

National Ground Water Association, Successful Remediation Technologies. Custom Course in Sante Fe, New Mexico. May 21, 2002. Focused on fate and transport of fuel contaminants associated with underground storage tanks.

National Ground Water Association; Successful Remediation Technologies Course in Chicago Illinois. April 1, 2002. Focused on fate and transport of contaminants associated with Superfund and RCRA sites.

California Integrated Waste Management Board, April and May, 2001. Alternative Landfill Caps Seminar in San Diego, Ventura, and San Francisco. Focused on both prescriptive and innovative landfill cover design.

UCLA Department of Environmental Engineering, February 5, 2002. Seminar on Successful Remediation Technologies focusing on Groundwater Remediation.

University Of Washington, Soil Science Program, Teaching Assistant for several courses including: Soil Chemistry, Organic Soil Amendments, and Soil Stability.

U.C. Berkeley, Environmental Science Program Teaching Assistant for Environmental Science 10.

Academic Grants Awarded:

California Integrated Waste Management Board. \$41,000 grant awarded to UCLA Institute of the Environment. Goal: To investigate effect of high carbon wood ash on volatile organic emissions from compost. 2001.

Synagro Technologies, Corona California: \$10,000 grant awarded to San Diego State University.

Goal: investigate effect of biosolids for restoration and remediation of degraded coastal sage soils. 2000.

King County, Department of Research and Technology, Washington State. \$100,000 grant awarded to University of Washington: Goal: To investigate odor emissions from biosolids application and the effect of polymers and ash on VOC emissions. 1998.

Northwest Biosolids Management Association, Washington State. \$20,000 grant awarded to investigate effect of polymers and ash on VOC emissions from biosolids. 1997.

Paul E. Rosenfeld, Ph.D. Page 7 of 12 October 2022

James River Corporation, Oregon: \$10,000 grant was awarded to investigate the success of genetically engineered Poplar trees with resistance to round-up. 1996.

United State Forest Service, Tahoe National Forest: \$15,000 grant was awarded to investigating fire ecology of the Tahoe National Forest. 1995.

Kellogg Foundation, Washington D.C. \$500 grant was awarded to construct a large anaerobic digester on St. Kitts in West Indies. 1993

Deposition and/or Trial Testimony:

In the Superior Court of the State of California, County of San Bernardino Billy Wildrick, Plaintiff vs. BNSF Railway Company Case No. CIVDS1711810 Rosenfeld Deposition 10-17-2022

In the State Court of Bibb County, State of Georgia

Richard Hutcherson, Plaintiff vs Norfolk Southern Railway Company Case No. 10-SCCV-092007 Rosenfeld Deposition 10-6-2022

In the Civil District Court of the Parish of Orleans, State of Louisiana

Millard Clark, Plaintiff vs. Dixie Carriers, Inc. et al.

Case No. 2020-03891

Rosenfeld Deposition 9-15-2022

In The Circuit Court of Livingston County, State of Missouri, Circuit Civil Division

Shirley Ralls, Plaintiff vs. Canadian Pacific Railway and Soo Line Railroad

Case No. 18-LV-CC0020

Rosenfeld Deposition 9-7-2022

In The Circuit Court of the 13th Judicial Circuit Court, Hillsborough County, Florida Civil Division

Jonny C. Daniels, Plaintiff vs. CSX Transportation Inc.

Case No. 20-CA-5502

Rosenfeld Deposition 9-1-2022

In The Circuit Court of St. Louis County, State of Missouri

Kieth Luke et. al. Plaintiff vs. Monsanto Company et. al.

Case No. 19SL-CC03191

Rosenfeld Deposition 8-25-2022

In The Circuit Court of the 13th Judicial Circuit Court, Hillsborough County, Florida Civil Division

Jeffery S. Lamotte, Plaintiff vs. CSX Transportation Inc.

Case No. NO. 20-CA-0049

Rosenfeld Deposition 8-22-2022

In State of Minnesota District Court, County of St. Louis Sixth Judicial District

Greg Bean, Plaintiff vs. Soo Line Railroad Company

Case No. 69-DU-CV-21-760

Rosenfeld Deposition 8-17-2022

In United States District Court Western District of Washington at Tacoma, Washington

John D. Fitzgerald Plaintiff vs. BNSF

Case No. 3:21-cv-05288-RJB

Rosenfeld Deposition 8-11-2022

Paul E. Rosenfeld, Ph.D. Page 8 of 12 October 2022

In Circuit Court of the Sixth Judicial Circuit, Macon Illinois Rocky Bennyhoff Plaintiff vs. Norfolk Southern Case No. 20-L-56 Rosenfeld Deposition 8-3-2022

In Court of Common Pleas, Hamilton County Ohio Joe Briggins Plaintiff vs. CSX

Case No. A2004464

Rosenfeld Deposition 6-17-2022

In the Superior Court of the State of California, County of Kern George LaFazia vs. BNSF Railway Company. Case No. BCV-19-103087

Rosenfeld Deposition 5-17-2022

In the Circuit Court of Cook County Illinois

Bobby Earles vs. Penn Central et. al. Case No. 2020-L-000550

Rosenfeld Deposition 4-16-2022

In United States District Court Easter District of Florida

Albert Hartman Plaintiff vs. Illinois Central

Case No. 2:20-cv-1633

Rosenfeld Deposition 4-4-2022

In the Circuit Court of the 4th Judicial Circuit, in and For Duval County, Florida Barbara Steele vs. CSX Transportation

Barbara Steele vs. CSX Transportation Case No.16-219-Ca-008796 Rosenfeld Deposition 3-15-2022

In United States District Court Easter District of New York

Romano et al. vs. Northrup Grumman Corporation

Case No. 16-cv-5760

Rosenfeld Deposition 3-10-2022

In the Circuit Court of Cook County Illinois

Linda Benjamin vs. Illinois Central Case No. No. 2019 L 007599 Rosenfeld Deposition 1-26-2022

In the Circuit Court of Cook County Illinois

Donald Smith vs. Illinois Central Case No. No. 2019 L 003426 Rosenfeld Deposition 1-24-2022

In the Circuit Court of Cook County Illinois

Jan Holeman vs. BNSF Case No. 2019 L 000675 Rosenfeld Deposition 1-18-2022

In the State Court of Bibb County State of Georgia

Dwayne B. Garrett vs. Norfolk Southern

Case No. 20-SCCV-091232

Rosenfeld Deposition 11-10-2021

Paul E. Rosenfeld, Ph.D. Page 9 of 12 October 2022

In the Circuit Court of Cook County Illinois

Joseph Ruepke vs. BNSF Case No. 2019 L 007730 Rosenfeld Deposition 11-5-2021

In the United States District Court For the District of Nebraska

Steven Gillett vs. BNSF Case No. 4:20-cv-03120 Rosenfeld Deposition 10-28-2021

In the Montana Thirteenth District Court of Yellowstone County

James Eadus vs. Soo Line Railroad and BNSF

Case No. DV 19-1056

Rosenfeld Deposition 10-21-2021

In the Circuit Court Of The Twentieth Judicial Circuit, St Clair County, Illinois

Martha Custer et al.cvs. Cerro Flow Products, Inc.

Case No. 0i9-L-2295

Rosenfeld Deposition 5-14-2021

Trial October 8-4-2021

In the Circuit Court of Cook County Illinois

Joseph Rafferty vs. Consolidated Rail Corporation and National Railroad Passenger Corporation d/b/a

AMTRAK,

Case No. 18-L-6845

Rosenfeld Deposition 6-28-2021

In the United States District Court For the Northern District of Illinois

Theresa Romcoe vs. Northeast Illinois Regional Commuter Railroad Corporation d/b/a METRA Rail

Case No. 17-cv-8517

Rosenfeld Deposition 5-25-2021

In the Superior Court of the State of Arizona In and For the Cunty of Maricopa

Mary Tryon et al. vs. The City of Pheonix v. Cox Cactus Farm, L.L.C., Utah Shelter Systems, Inc.

Case No. CV20127-094749

Rosenfeld Deposition 5-7-2021

In the United States District Court for the Eastern District of Texas Beaumont Division

Robinson, Jeremy et al vs. CNA Insurance Company et al.

Case No. 1:17-cv-000508

Rosenfeld Deposition 3-25-2021

In the Superior Court of the State of California, County of San Bernardino

Gary Garner, Personal Representative for the Estate of Melvin Garner vs. BNSF Railway Company.

Case No. 1720288

Rosenfeld Deposition 2-23-2021

In the Superior Court of the State of California, County of Los Angeles, Spring Street Courthouse

Benny M Rodriguez vs. Union Pacific Railroad, A Corporation, et al.

Case No. 18STCV01162

Rosenfeld Deposition 12-23-2020

In the Circuit Court of Jackson County, Missouri

Karen Cornwell, Plaintiff, vs. Marathon Petroleum, LP, Defendant.

Case No. 1716-CV10006

Rosenfeld Deposition 8-30-2019

Paul E. Rosenfeld, Ph.D. Page 10 of 12 October 2022

In the United States District Court For The District of New Jersey

Duarte et al, Plaintiffs, vs. United States Metals Refining Company et. al. Defendant.

Case No. 2:17-cv-01624-ES-SCM

Rosenfeld Deposition 6-7-2019

In the United States District Court of Southern District of Texas Galveston Division

M/T Carla Maersk vs. Conti 168., Schiffahrts-GMBH & Co. Bulker KG MS "Conti Perdido" Defendant.

Case No. 3:15-CV-00106 consolidated with 3:15-CV-00237

Rosenfeld Deposition 5-9-2019

In The Superior Court of the State of California In And For The County Of Los Angeles - Santa Monica

Carole-Taddeo-Bates et al., vs. Ifran Khan et al., Defendants

Case No. BC615636

Rosenfeld Deposition 1-26-2019

In The Superior Court of the State of California In And For The County Of Los Angeles - Santa Monica

The San Gabriel Valley Council of Governments et al. vs El Adobe Apts. Inc. et al., Defendants

Case No. BC646857

Rosenfeld Deposition 10-6-2018; Trial 3-7-19

In United States District Court For The District of Colorado

Bells et al. Plaintiffs vs. The 3M Company et al., Defendants

Case No. 1:16-cv-02531-RBJ

Rosenfeld Deposition 3-15-2018 and 4-3-2018

In The District Court Of Regan County, Texas, 112th Judicial District

Phillip Bales et al., Plaintiff vs. Dow Agrosciences, LLC, et al., Defendants

Cause No. 1923

Rosenfeld Deposition 11-17-2017

In The Superior Court of the State of California In And For The County Of Contra Costa

Simons et al., Plaintifs vs. Chevron Corporation, et al., Defendants

Cause No. C12-01481

Rosenfeld Deposition 11-20-2017

In The Circuit Court Of The Twentieth Judicial Circuit, St Clair County, Illinois

Martha Custer et al., Plaintiff vs. Cerro Flow Products, Inc., Defendants

Case No.: No. 0i9-L-2295

Rosenfeld Deposition 8-23-2017

In United States District Court For The Southern District of Mississippi

Guy Manuel vs. The BP Exploration et al., Defendants

Case No. 1:19-cv-00315-RHW

Rosenfeld Deposition 4-22-2020

In The Superior Court of the State of California, For The County of Los Angeles

Warrn Gilbert and Penny Gilber, Plaintiff vs. BMW of North America LLC

Case No. LC102019 (c/w BC582154)

Rosenfeld Deposition 8-16-2017, Trail 8-28-2018

In the Northern District Court of Mississippi, Greenville Division

Brenda J. Cooper, et al., Plaintiffs, vs. Meritor Inc., et al., Defendants

Case No. 4:16-cv-52-DMB-JVM

Rosenfeld Deposition July 2017

Paul E. Rosenfeld, Ph.D. Page 11 of 12 October 2022

In The Superior Court of the State of Washington, County of Snohomish

Michael Davis and Julie Davis et al., Plaintiff vs. Cedar Grove Composting Inc., Defendants

Case No. 13-2-03987-5

Rosenfeld Deposition, February 2017

Trial March 2017

In The Superior Court of the State of California, County of Alameda

Charles Spain., Plaintiff vs. Thermo Fisher Scientific, et al., Defendants

Case No. RG14711115

Rosenfeld Deposition September 2015

In The Iowa District Court In And For Poweshiek County

Russell D. Winburn, et al., Plaintiffs vs. Doug Hoksbergen, et al., Defendants

Case No. LALA002187

Rosenfeld Deposition August 2015

In The Circuit Court of Ohio County, West Virginia

Robert Andrews, et al. v. Antero, et al.

Civil Action No. 14-C-30000

Rosenfeld Deposition June 2015

In The Iowa District Court for Muscatine County

Laurie Freeman et. al. Plaintiffs vs. Grain Processing Corporation, Defendant

Case No. 4980

Rosenfeld Deposition May 2015

In the Circuit Court of the 17th Judicial Circuit, in and For Broward County, Florida

Walter Hinton, et. al. Plaintiff, vs. City of Fort Lauderdale, Florida, a Municipality, Defendant.

Case No. CACE07030358 (26)

Rosenfeld Deposition December 2014

In the County Court of Dallas County Texas

Lisa Parr et al, Plaintiff, vs. Aruba et al, Defendant.

Case No. cc-11-01650-E

Rosenfeld Deposition: March and September 2013

Rosenfeld Trial April 2014

In the Court of Common Pleas of Tuscarawas County Ohio

John Michael Abicht, et al., Plaintiffs, vs. Republic Services, Inc., et al., Defendants

Case No. 2008 CT 10 0741 (Cons. w/ 2009 CV 10 0987)

Rosenfeld Deposition October 2012

In the United States District Court for the Middle District of Alabama, Northern Division

James K. Benefield, et al., Plaintiffs, vs. International Paper Company, Defendant.

Civil Action No. 2:09-cv-232-WHA-TFM

Rosenfeld Deposition July 2010, June 2011

In the Circuit Court of Jefferson County Alabama

Jaeanette Moss Anthony, et al., Plaintiffs, vs. Drummond Company Inc., et al., Defendants

Civil Action No. CV 2008-2076

Rosenfeld Deposition September 2010

In the United States District Court, Western District Lafayette Division

Ackle et al., Plaintiffs, vs. Citgo Petroleum Corporation, et al., Defendants.

Case No. 2:07CV1052

Rosenfeld Deposition July 2009

Paul E. Rosenfeld, Ph.D. Page 12 of 12 October 2022

Response to Comment Letter O1 - Blum, Collins & Ho LLP (Golden State Environmental Justice Alliance)

Response O1-a

Introductory comments are noted for the record. The commenter provides a general introductory and requests to be added to the public interest list are noted to the record. All attachments to the comment letter have been received. As the specific comments in the letter re-state the comments in the attachments, responses to the letter also fully respond to the attachments. Therefore, no further revision to the analysis in the Draft EIR is required.

Response O-1b

The commenter's summary of the Project is noted for the record. Therefore, no further revision to the analysis in the Draft EIR is required.

Response O1-c

The City disagrees that the Draft EIR must include analysis of potential environmental justice issues, as CEQA does not require consideration of potential implications to environmental justice or socioeconomics as a specific resource, further, environmental justice is not listed within the "Environmental Factors Potentially Affected" in Appendix G, Environmental Checklist Form, to the CEQA Guidelines.⁴ The remainder of the comment presents data from California Environmental Protection Agency's (CalEPA) CalEnviroScreen. The City further notes that the South Coast Air Quality Management District (SCAQMD) CEQA Air Quality Handbook does not recommend analysis of toxic air contaminants (TACs) from short-term construction activities associated with land use development projects.⁵

As well, a construction health risk assessment (HRA) is not required by SCAQMD and no guidance for HRAs for construction has been adopted by SCAQMD or the City. Although SCAQMD's CEQA Air Quality Handbook does not require an HRA for short-term construction emissions, a construction HRA was conservatively prepared for the Project and is provided in the Draft EIR in *Section 4.3: Air Quality*. The HRA was conducted based on the SCAQMD's Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis and the SCAQMD Risk Assessment Procedures and the guidance from the California Office of Environmental Health Hazard Assessment (OEHHA).

As analyzed in *Section 4.3: Air Quality* of the Draft EIR, pages 4.3-35 and 4.3-36, in Project construction activities, including TACs from equipment exhaust would not expose sensitive receptors to substantial pollutant concentrations. Project-related TAC impacts during construction would be less than significant with mitigation measures Mitigation Measure (MM) AQ-1 through MM AQ-8. MM AQ-1 requires the Project to use "Super-Compliant" low VOC paints; MM AQ-2 requires that all cargo handling equipment used on a daily basis (yard trucks/hostlers, forklifts, etc.) be electric; MM AQ-3 requires the implementation of a Transportation Demand Management (TDM) program to reduce single occupant

City of Ontario July 2024

⁴ Title 14. Natural Resources. (2018). Retrieved from: http://files.resources.ca.gov/ceqa/docs/2018_CEQA_FINAL_TEXT_122818.pdf.

South Coast Air Quality Management District. (2024). Air Quality Analysis Handbook. Retrieved from: https://www.aqmd.gov/home/rules-compliance/ceqa/air-quality-analysis-handbook.

vehicle trips and encourage transit; MM AQ-4 requires the buildings to be designed to accommodate electric vehicle (EV) infrastructure; MM AQ-5 prohibits idling when engines are not in use; MM AQ-6 prohibits the installation of wood-burning and natural gas devices for residential fireplaces; MM AQ-7 prohibits refrigerated warehouse space/cold storage; and MM AQ-8 requires the use of Tier 4 construction equipment is required to reduce the cancer risk.

An operational phase HRA was also conducted for this Project (see *Appendix B* of the Draft EIR). The analysis included both on-site and off-site impacts from the diesel trucks accessing the warehouse development on nearby residential and worker receptors. Chronic impacts were also evaluated in the HRA.

The operational HRA determined that incorporating operational MM AQ-2 through MM AQ-5 and MM AQ-7, would reduce potential hazards to be within acceptable limits. MM AQ-2 requires that all cargo handling equipment used on a daily basis (yard trucks/hostlers, forklifts, etc.) be electric; MM AQ-3 requires the implementation of a TDM program to reduce single-occupant vehicle trips and encourage transit; MM AQ-4 requires the buildings to be designed to accommodate EV infrastructure; MM AQ-5 prohibits idling when engines are not in use; and MM AQ-7 prohibits refrigerated warehouse space/cold storage. *Section 4.3: Air Quality* of the Draft EIR determined that Project construction and operations would not expose sensitive receptors to substantial pollutant concentrations. Construction and operations would not exceed SCAQMD Local Significance Thresholds (LSTs), would not create a carbon monoxide (CO) hotspot, and would not generate concentrations of DPM that would result in carcinogenic, chronic, or acute health risk effects. Therefore, Project impacts would be less than significant. Therefore, no further revision to the analysis in the Draft EIR is required.

Response O1-d

This comment is noted for the record. See Response O1-c.

Response O1-e

This comment is noted for the record. See Response O1-c.

Response O1-f

This comment is noted for the record. See Response O1-c.

Response O1-g

This comment is noted for the record. See Response O1-c.

Response O1-h

The City disagrees with the assertion that the Draft EIR must use one of three state-approved compliance modeling software for non-residential buildings and that the Draft EIR does not comply with the 2022 Building Energy Efficiency Standards. The software programs listed by the California Energy Commission (CEC) concern the performance approach method, which provides maximum flexibility to trade off the energy performance of different building components to achieve compliance for the 2022 Energy Standards. As stated in the CalEEMod User's Guide, CalEEMod, which was used by the City, utilizes widely

accepted methodologies for estimating emissions combined with default data. The sources for the methodologies include studies commissioned by the CEC and also utilize energy conservation standards subject to Title 24.6

The energy analysis and associated thresholds are provided on Draft EIR Section 4.6: Energy. The analysis specifically responds to the guidance for energy analysis in the State CEQA Guidelines Appendix F, which requires a determination on if a project would increase the need for new energy supplies. The analysis is used to disclose the amount of energy that the Project would require and is not utilized to demonstrate compliance for performance. Additionally, the Draft EIR discloses the Project's electricity consumption, natural gas consumption, and transportation fuel consumption and determined that the Project's energy consumption would not be inefficient or wasteful as the Project will be required by the California Green Building Standards Code (CALGreen Code) to comply with the Title 24 Building Energy Efficiency Standards (Nonresidential) published by the CEC, which contain stringent mandatory standards for mechanical systems, lighting (indoor and outdoor), and appliances to minimize energy use. Therefore, the Project used the appropriate model to calculate and disclose the Project's energy use, and also demonstrated that the Project would be required to comply with the CALGreen Code and Title 24. Therefore, no further revisions to the Draft EIR are required.

Response O1-i

GHG emissions and impacts were fully analyzed within Draft EIR *Section 4.8: Greenhouse Gas Emissions*. As discussed in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, page 4.8-14, CEQA Guidelines allow lead agencies to determine thresholds of significance that illustrate the extent of an impact and are a basis from which to apply mitigation measures. As stated in CEQA Guidelines Section 15064.4(b)(3), when determining the significance of impacts from GHG emissions, the lead agency should consider "the extent to which the project complies with regulations or requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of greenhouse gas emissions." As stated in the City of Ontario Community Climate Action Plan (CAP), the CAP is in concert with Assembly Bill (AB) 32 and international efforts to address global climate change and includes specific local requirements that will substantially lessen the cumulative problem and therefore the CAP is the type of mitigation called for in CEQA Guidelines Section 15130(a)(3) and Section 15183.5.

The Draft EIR's GHG analysis quantifies the Project's GHG emissions for informational-purposes only and determines significance based on the Project's consistency with the CAP, adopted in 2022. The CAP utilizes screening tables that assign point values to document implementation of CAP strategies, ensuring compliance with CEQA provisions for evaluating and mitigating climate change impacts. The Screening Tables provides a menu of options that both ensures implementation of the reduction strategies and flexibility. According to the adopted CAP, projects garnering at least 100 points on the CAP Consistency Tables would be considered consistent with the reduction quantities in the City's CAP and are considered less than significant with regards to GHG emissions. Therefore, the quantitative threshold of 3,000 MTCO₂e threshold raised by the comment has no relevancy to the Draft EIR's GHG analysis. Therefore, no further revisions to the Draft EIR are required.

City of Ontario July 2024

⁶ CalEEMod User's Guide. (2021). Retrieved from: http://www.aqmd.gov/docs/default-source/caleemod/user-guide-2021/01_user-39-s-guide2020-4-0.pdf?sfvrsn=6.

Response O1-j

The City disagrees that Table 4.8-8 in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, provides an erroneous and misleading consistency analysis. The commenter claims that the Project is not consistent with Transportation Strategy 9 due to the lack of transit in the Project vicinity. However, the consistency analysis states that the Project would construct transit turnouts within the Specific Plan Area. This Project feature is intended to support the expansion of transit service in the Project vicinity, specifically the BRT service that the City is coordinating with regional transit agencies in order to serve Euclid Avenue on the western boundary of the Project site. Therefore, the Project would directly support the expansion of transit service into the Project Area by constructing turnouts and the Draft EIR correctly concludes that the Project would be consistent with Transportation Strategy 9. Therefore, no further revision to the analysis in the Draft EIR is required.

Response O1-k

As the commenter notes, there is no site plan or development information for the residential portion of the proposed Project, which has been analyzed programmatically in the Draft EIR. Table 4.8-9: GHG Reduction Measures Screening Table for Ontario Development in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, page 4.8-28, includes a list of reduction measures that individual developments can implement to show consistency with the CAP. Projects that achieve 100 points are considered to be consistent with the CAP and would result in less than significant impact with regard to consistency with GHG reduction planning.

The commenter incorrectly claims that the Draft EIR assigns the points shown in Table 4.8-9 in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, to the Project. However, as discussed in Table 4.8-9 in Section 4.8: Greenhouse Gas Emissions, page 4.8-28, "identifies potential design features and their associated scores" and is included to show "that the proposed Project has the potential to achieve 100 points on the CAP's screening tables" given the amount of available points. The discussion in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, page 4.8-28, has been revised to clarify that Table 4.8-9 lists all available design features and points potential and is not intended to provide that the Project would implement all of the design features listed; see Section 3.0: Errata, of the Final EIR. Table 4.8-9 in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR has also been updated to include the design features and points value according to the latest version of the CAP screening tables (2022), which is also included in *Appendix B* of the Draft EIR. Therefore, no further revisions to the Draft EIR are required.

Response O-1I

The City disagrees with the assertion that achievement of CAP screening points is not possible. MM GHG-1 requires the achievement of 100 points per the CAP screening tables and the incorporation of design features in development plans prior to the issuance of building permits. As shown in Table 4.8-9 of the Final EIR, CAP screening tables provide development projects with design options that could provide a total of 218 possible multi-family residential points and a total of 238 possible warehouse points. Therefore, as discussed in the Draft EIR, consistency with the CAP through achievement of 100 points on the screening tables is both feasible and required. The less than significant impact conclusion is solely

based on the Project's feasible and required achievement of 100 points on the screening tables and not on a quantification of GHG emissions reductions. Therefore, no further revisions to the Draft EIR are required.

Response O-1m

The City disagrees with the assertion that the Draft EIR provides inadequate consistency analysis as to the 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy (2020-2045 RTP/SCS). The consistency analysis in the Draft EIR serves to determine the Project's consistency with the 2020-2045 RTP/SCS and explains, specifically, that the Project is consistent with the 2020-2045 RTP/SCS Goals 5, 6, and 7.

2020-2045 RTP/SCS Goal 5 aims to reduce greenhouse gas (GHG) emissions and improve air quality. The Project is consistent with Goal 5 because the reduction of energy use, improvement of air quality, and promotion of more environmentally sustainable development would be encouraged through the existing and proposed alternative transportation modes, sustainable building and landscaping design techniques, and other best management practices for structures and non-structures. Further, the Project includes the construction of bus turnouts, which would serve future Bus Rapid Transit (BRT) service currently being coordinated by the City of Ontario and regional transit agencies. The future BRT service would target destinations along corridors, including Euclid Avenue on the western boundary of the Project site. The Project would directly support the expansion of transit services in the Project area.

2020-2045 RTP/SCS Goal 6 aims to support healthy and equitable communities. The Project is consistent with Goal 6 as it would be constructed to comply with the current building codes, State and federal requirements, including Green Building Standards.

2020-2045 RTP/SCS Goal 7 aims to adapt to a changing climate and support an integrated regional development pattern and transportation network. The Project is consistent with Goal 7 as it would construct new roads, infrastructure, and buildings to support uses consistent with the 2020-2045 RTP/SCS and consistent with current building codes, State and federal requirements including Green Building Standards. In addition, as discussed in Goal 5, the Project would support the expansion of transit services in the Project vicinity through the construction of bus turnouts to service future BRT services. Therefore, no further revisions to the Draft EIR are required.

Response O-1n

The City disagrees with this assertion in that the Draft EIR does not adequately or accurately analyze the proposed Project in accordance with CEQA Guidelines Environmental Checklist threshold, "For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area."

As discussed in **Section 4.9: Hazards and Hazardous Materials** of the Draft EIR, page 4.9-5, the Project site is located approximately 1.2 miles north of the Chino Airport and is approximately 3.7 miles southwest of the Ontario International Airport. Chino Airport is owned and operated by the County of San Bernardino and situated within the incorporated limits of the City of Chino in the southwestern corner of the County

of San Bernardino. Operations at Chino Airport affect lands within Riverside County less than two miles to the east, thus necessitating Riverside County Airport Land Use Commission adoption of a Chino Airport Land Use Compatibility Plan for the portion of the airport influence area lying within Riverside County.⁷

The Project site is within the Chino Airport Influence Area and is within the Zone E compatibility zone, as depicted in Draft EIR Figure 4.9-1: Chino Airport Compatibility Zones. Zone E is categorized as other airport environs and prohibits only hazards to flight. Zone E places no requirements on open land, no limit on residential densities, and discourages major spectator-oriented facilities such as sports stadiums, amphitheaters, and concert halls beneath principal flight tracks. In addition, airspace review is required for objects that exceed 100 feet tall. Zone E requirements align with the Project Specific Plan. Furthermore, the maximum building height for the Project is 45 feet in the Business Park district and 55 feet in the Mixed-Use district and the Project does not require ALUCP review. Additionally, the City disagrees with the assertion that the Project site, including the southern residential portion of the site, is within Safety Zone III, of the Chino Airport Land Use Compatibility Plan. According to The Ontario Plan 2050 (TOP 2050) EIR Figure 5.9-2: Airport Safety Zones, the Project site is not located within a Chino Airport Safety Zone.8 As discussed in Section 4.9: Hazards and Hazardous Materials of the Draft EIR, pages 4.9-37 through 4.9-38, the San Bernardino County Chino Airport Comprehensive Land Use Plan identifies the Project site not being within a Safety Zone of the Chino Airport Overlay (Generic Safety Zones for General Aviation Airports from the Caltrans Division of Aeronautics – California Airport Land Use Planning Handbook), further depicted in Draft EIR Figure 4.9-2: Airport Safety Zones that shows the Project site on TOP 2050 EIR Figure 5.9-2. Therefore, as concluded in the Draft EIR, the Project is not anticipated to result in a safety hazard or excessive noise for people residing or working in the Project area. Therefore, no further revisions to the Draft EIR are required.

Response O1-o

The City disagrees with this assertion that the Draft EIR omits discussion and analysis regarding the Project's consistency with other land use plans, policies, or regulations adopted for the purpose of avoiding or mitigating an environmental effect. In particular, the commenter asserts that the Project will have a significant and unavoidable cumulatively considerable impact to air quality and greenhouse gas emissions. As identified within *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, the Project would result in a less than significant impact with mitigation incorporated. As stated in *Section 4.11: Land Use and Planning* of the Draft EIR, discussion regarding reduction in greenhouse gas (GHG) emissions can be found in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, and discussion regarding improvements to air quality can be found in *Section 4.3: Air Quality* of the Draft EIR, page 4.11-10.

The reduction of energy use, improvement of air quality, and promotion of more environmentally sustainable development would be encouraged through the existing and proposed alternative transportation modes, sustainable building and landscaping design techniques, and other best management practices for structures and non-structures. In addition, it is anticipated that less emissions would occur due to the mixed-use nature of the Project, which encourages an environment that is

City of Ontario July 2024

Riverside County Airport Land Use Commission. 2008. https://rcaluc.org/sites/g/files/aldnop421/files/migrated/Portals-13-PDFGeneral-plan-newplan-36--20Vol.-202-20Chino.pdf.

City of Ontario. The Ontario Plan 2050, Figure 5.9-2. Page 5.9-29: Airport Safety Zones. https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/The%20Ontario%20Plann/EIR/Final_DraftSEIR_TOP2050.pdf.

accessible through walkability and other sustainable alternatives. The Project would construct new roads, infrastructure, and buildings to support uses consistent with the 2020-2045 RTP/SCS and consistent with current building codes and state and Federal requirements including CALGreen Code. Additionally, the proposed Project Specific Plan proposes the same land uses as contained in the City's General Plan, The Ontario Plan (TOP) 2050. Furthermore, the Project Specific Plan would promote orderly development to coincide with adjacent land uses. As shown in *Section 4.11: Land Use and Planning* of the Draft EIR, Tables 4.11-2 and 4.11-3, the Project embodies the goals and policies in the applicable long-range planning documents. No mitigation is required other than compliance with applicable plans, policies, and programs, including the proposed Project Specific Plan and TOP 2050. Therefore, no further revision to the cumulative projects analyzed in the Draft EIR is required.

Response O-1p

See Response O1-c. The City disagrees with the assertion that the Draft EIR does not provide information regarding the buildout conditions of the City's TOP 2050. The Draft EIR provides cumulative analysis for each focus area in its respective section associated with development and growth in the City and region. Further description of the portion of the Draft EIR referenced in this comment is not necessary. Cumulatively significant effects were individually discussed in each environmental topic area's (Sections 4.1: Air Quality through 4.17: Utilities and Service Systems of the Draft EIR) cumulative Impacts subsection. Further, the cumulative project list was considered to evaluate cumulative impacts per Sections 15130 and 15355 of the State CEQA Guidelines. Therefore, no further revision to the cumulative projects analyzed in the Draft EIR is required.

Response O-1q

Comment noted. The City disagrees with this assertion in that the Draft EIR provides inadequate consistency analysis that focuses on the broad policy-oriented goals of the 2020-2045 RTP/SCS. The Project is consistent with the 2020-2045 RTP/SCS Goals 5, 6, and 7.

2020-2045 RTP/SCS Goal 5 aims to reduce greenhouse gas (GHG) emissions and improve air quality. The Project is consistent with Goal 5 as the reduction of energy use, improvement of air quality, and promotion of more environmentally sustainable development would be encouraged through the existing and proposed alternative transportation modes, sustainable building and landscaping design techniques, and other best management practices for structures and non-structures. Further, the Specific Plan area is within walking distance of the Eucalyptus and Euclid Omnitrans Bus Route 83. Omnitrans Bus Route 83 directly connects the site to the cities of Chino and Upland and to several stops in the City of Ontario, as well as the Chino Transit Center and Ontario Civic Center Transfer Station.

2020-2045 RTP/SCS Goal 6 aims to support healthy and equitable communities. The Project is consistent with Goal 6 as it would be constructed to comply with the current building codes, State and federal requirements, including Green Building Standards.

2020-2045 RTP/SCS Goal 7 to adapt to a changing climate and support an integrated regional development pattern and transportation network. The Project is consistent with Goal 7 as it would construct new roads, infrastructure, and buildings to support uses consistent with the 2020-2045 RTP/SCS and consistent with current building codes, State and federal requirements including Green Building Standards. In addition, as

discussed in Goal 5, the Project would be located within walking distance of public transit, thereby reducing the potential use of vehicles. Therefore, no further revision to the analysis in the Draft EIR is required.

Response O1-r

See Response O1-n. The City disagrees with the assertion that the Draft EIR does not provide an accurate consistency analysis with all land use plans, policies, or regulations adopted for the purpose of avoiding or mitigating an environmental effect, specifically with Policy LU5-7 ALUCP Consistency with Land Use Regulations. As discussed in *Section 4.9: Hazards and Hazardous Materials* of the Draft EIR, pages 4.9-37 through 4.9-38, the San Bernardino County Chino Airport Comprehensive Land Use Plan identifies the Project site not being within a Safety Zone of the Chino Airport Overlay (Generic Safety Zones for General Aviation Airports from the Caltrans Division of Aeronautics — California Airport Land Use Planning Handbook), as depicted in Draft EIR Figure 4.9-2: Airport Safety Zones. Therefore, Project implementation is not required to comply with the criteria of the Chino Airport final composite safety zones, and no further revision to the analysis in the Draft EIR is required.

Response O1-s

See Response O1-n. The City disagrees with the assertion that the Draft EIR has not adequately or accurately analyzed the Project's consistency with the San Bernardino County ALUC Chino Airport Compatibility Plan. Additionally, the Project Specific Plan allows for up to 466 residential units and a maximum of 1,676,887 square feet of employment generating land uses within the Project area. The Specific Plan includes future transit stops and near planned transit lines and helps to improve jobs housing balance in the City and the surrounding region with the provision of varied land use alternatives within the Mixed-Use District. Additionally, as discussed in *Section 4.11: Land Use and Planning* of the Draft EIR, pages 4.11-9 through 4.11-30, the Specific Plan is consistent with the City TOP 2050, Policy ER4-3, which aims to reduce GHG emissions in accordance with regional, State, and federal regulations. The Project is consistent with TOP 2050 Policy ER4-3 as it would be constructed in accordance with California Green Building Standards Code; including but not limited to, using energy-efficient LED products, choosing roof and paving materials that possess a high level of solar reflectivity, and employing high-performance dual-pane window glazing in office storefronts. As such, the Project would help reduce GHG emissions in accordance with regional, State, and federal regulations and be consistent with TOP 2050 Policy ER4-3. Therefore, no further revisions to the Draft EIR are required.

Response O1-t

The City disagrees with the assertion that the Draft EIR has provided a misleading and inaccurate qualitative analysis of the project's GHG emissions that cannot be feasibly assured to reduce GHG emissions to less than significant levels. As stated in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, the Project's construction and operational emissions were calculated using the California Emissions Estimator Model version 2022.1 (CalEEMod). Details of the modeling assumptions and emission factors are provided in *Appendix B1: Air Quality Emissions Model Data* of the Draft EIR. For construction, CalEEMod calculates emissions from off-road equipment usage and on-road vehicle travel associated with haul, delivery, and construction worker trips. GHG emissions during construction were forecasted based

on the proposed construction schedule and applying the mobile-source and fugitive dust emissions factors derived from CalEEMod. The Project's construction-related GHG emissions would be generated from off-road construction equipment, on-road hauling and vendor (material delivery) trucks, and worker vehicles.

The Project's operations-related GHG emissions would be generated by vehicular traffic, off-road equipment, area sources (e.g., landscaping maintenance, consumer products), electrical generation, natural gas consumption, water supply and wastewater treatment, and solid waste. The increase of traffic over existing conditions as a result of the Project was obtained from the Project's Traffic Analysis Study (see *Appendix I1: Traffic Analysis*) prepared by Urban Crossroads (January 2023). Project trip generation from the Trip Generation Analysis is based on the following Institute of Transportation Engineers (ITE) land use categories:

ITE Land Use 130: Industrial Park

ITE Land Use 150: Warehousing

ITE Land Use 220: Multifamily Low-Rise Residential

ITE Land Use 822: Strip Retail

ITE Land Use 933: Fast-Food Restaurant Without Drive-Through

ITE Land Use: 934: Fast-Food Restaurant With Drive-Through

The ITE Trip Generation Manual does not contain trip generation rates for truck/trailer parking lots. Therefore, the traffic study developed rates with data from other truck/trailer parking facilities located in the surrounding area, as discussed in *Appendix I* of the Draft EIR. Truck mix percentages are based on the SCAQMD Truck Trip Generation Study applied to ITE truck percentages. Other operational emissions from area, energy, and stationary sources were quantified in CalEEMod based on land use activity data, as discussed in *Appendix B* and *Appendix I* of the Draft EIR.

As concluded in Table 4.8-7 in Section 4.8: Greenhouse Gas Emissions of the Draft EIR, Project Buildout would generate approximately 36,129 MTCO2e per year with the implementation of operational air quality MM AQ-2 through MM AQ-6. Since the majority of emissions are from mobile sources and neither the Project Applicant nor the City have regulatory authority to control tailpipe emissions, no feasible mitigation measures exist that would reduce the Project's impacts with respect to mobile operational emissions. While the Project has some control over GHG emissions (refer to MM AQ-2 through MM AQ-6), the majority of emissions are beyond the Project's control. MM GHG-1 would require that the Project incorporate project design features to achieve a minimum score of 100 points on the Screening Tables. As stated in the adopted Community Climate Action Plan (CAP), projects that achieve a minimum score of 100 points are considered less than significant. At the time of this analysis, the Project is in the design phase, where project design features needed to achieve consistency with the Screening Tables are being considered and implemented. A preliminary set of the screening tables has been completed to show that the Project can feasibly achieve 100 points (refer to Appendix B of the Draft EIR). The City requires that an applicant must complete and submit a final set of screening tables showing the achievement of the required 100 points prior to issuance of the building permit, as required by MM GHG-1. Therefore, with the implementation of MM AQ-2 through MM AQ-6 and MM GHG-1, the Project impact is less than significant.

In addition, the Project would include several sustainable design features as required by MM GHG-1 that would help reduce GHG emissions. Regarding goals for 2050 under Executive Order S-3-05, at this time it is not possible to quantify the emissions savings from future regulatory measures, as they have not yet been developed; nevertheless, it can be anticipated that operation of the proposed Project would benefit from the implementation of current and potential future regulations (e.g., improvements in vehicle emissions, SB 100/renewable electricity portfolio improvements, etc.) enacted to meet an 80 percent reduction below 1990 levels by 2050.

The majority of the GHG reductions from the Scoping Plan would result from continuation of the Cap-and-Trade regulation. AB 398 extends the State's Cap-and-Trade program through 2030 and the Scoping Plan provide a comprehensive plan for the state to achieve its GHG targets through a variety of regulations enacted at the State level. Additional reductions are achieved from electricity sector standards (i.e., utility providers to supply 60 percent renewable electricity by 2030 and 100 percent renewable by 2045), doubling the energy efficiency savings at end uses, additional reductions from the LCFS, implementing the short-lived GHG strategy (e.g., hydrofluorocarbons), and implementing the Mobile Source Strategy and Sustainable Freight Action Plan.

The Project would not obstruct or interfere with efforts to increase zero emission vehicles (ZEVs) or state efforts to improve system efficiency. As discussed above and in *Section 4.3: Air Quality* of the Draft EIR, MM AQ-2 through MM AQ-6 would reduce mobile source emissions and would support the State's transition to ZEVs. The Project would also benefit from implementation of the State programs for ZEVs and goods movement efficiencies that reduce future GHG emissions from trucks.

The CAP establishes a city points system that assigns values for each GHG emissions mitigation design element or operational program feature incorporated into a given development project. The CAP Screening Tables point values correspond to the minimum GHG emissions reduction expected from each feature. Projects with features that yield at least 100 Screening Table points are considered consistent with the reduction quantities anticipated in the City's CAP. Such projects would be determined to have a less than significant individual and cumulative GHG emissions impact. As discussed above, both Phase I and Phase II of the Project can feasibly achieve 100 points individually, based on the completion of preliminary Screening Tables (see *Appendix B* of the Draft EIR). Achieving 100 points ensures that the Project would not impede California's statewide GHG reduction goals for 2030 and 2050. Therefore, impacts would be less than significant with implementation of mitigation MM AQ-2 through MM AQ-6 and MM GHG-1. Therefore, the Project is consistent with TOP 2050 Policy ER4-6. Therefore, no further revisions to the Draft EIR are required.

Response O1-u

See Response O1-c above. As analyzed in **Section 4.3: Air Quality** of the Draft EIR, pages 4.3-35 and 4.3-36, Project construction activities, including TACs from equipment exhaust would not expose sensitive receptors to substantial pollutant concentrations. Project-related TAC impacts during construction would be less than significant with mitigation measures MM AQ-1 through MM AQ-8. MM AQ-1 requires the Project to use "Super-Compliant" low VOC paints; MM AQ-2 requires that all cargo handling equipment used on a daily basis (yard trucks/hostlers, forklifts, etc.) be electric; MM AQ-3 requires the implementation of a TDM program to reduce single occupant vehicle trips and encourage transit;

MM AQ-4 requires the buildings to be designed to accommodate EV infrastructure; MM AQ-5 prohibits idling when engines are not in use; MM AQ-6 prohibits the installation of wood-burning and natural gas devices; MM AQ-7 prohibits refrigerated warehouse space/cold storage; and MM AQ-8 requires the use of Tier 4 construction equipment is required to reduce the cancer risk.

Additionally, incorporating operational MM AQ-2 through MM AQ-5 and MM AQ-7, would reduce potential hazards to be within acceptable limits. MM AQ-2 requires that all cargo handling equipment used on a daily basis (yard trucks/hostlers, forklifts, etc.) be electric; MM AQ-3 requires the implementation of a TDM program to reduce single occupant vehicle trips and encourage transit; MM AQ-4 requires the buildings to be designed to accommodate EV infrastructure; MM AQ-5 prohibits idling when engines are not in use; and MM AQ-7 prohibits refrigerated warehouse space/cold storage. *Section 4.3: Air Quality* of the Draft EIR determined that Project construction and operations would not expose sensitive receptors to substantial pollutant concentrations. Construction and operations would not exceed SCAQMD Local Significance Thresholds (LSTs), would not create a carbon monoxide (CO) hotspot, and would not generate concentrations of DPM that would result in carcinogenic, chronic, or acute health risk effects. Therefore, Project impacts would be less than significant. No further revisions to the Draft EIR are required.

Response O1-v

Per CEQA Guidelines Sections 15131 and 15384, CEQA analysis addresses a project's potential impacts on the physical environment; economic or social issues of a project are not treated as significant effects on the environment, or as substantial evidence if they do not contribute to or are not caused by physical impacts on the environment. Additionally, the proposed Project Specific Plan is consistent with the City's TOP 2050, land use and zoning designations, and therefore, a general plan amendment is not required. Therefore, TOP 2050 Policies CE3-1 and CE3-2, which concern economic issues not required to be assessed in the Draft EIR. These policies can be considered by the City Council as part of its policy deliberations concerning the Project. Therefore, no further revisions to the Draft EIR are required.

Response O1-w

The City disagrees with the assertion the Draft EIR does not provide adequate analysis of the application of the City's Development Impact Fee (DIF) program to mitigate deficient level of service (LOS) intersections.

As a preliminary matter, LOS-related impacts are no longer potential environmental impacts under CEQA. TOP 2050 Policy M1-5 Level of Service requires roadways to maintain a peak hour Level of Service (LOS) E or better at all intersections. The Project would comply with the Functional Roadway Classification Plan of the Mobility Element which aims to comply with federal, State, and local design and safety standards, meet the needs of multiple transportation modes and users, and maintain a LOS of E or better at all intersections addressed in the Draft EIR. The Project would be required to comply with the City's DIF program, which helps fund transportation improvements. The City's DIF includes regional improvements to comply with Measure I. As discussed in **Section 4.15: Transportation and Traffic** of the Draft EIR, page 4.15-11, if roadway improvements are not included in the DIF program, the Project would be required to provide funding on a fair share basis where appropriate, as determined by the City. The City

shall collect these fees, with the proceeds solely used as part of a funding mechanism aimed at ensuring that regional highways and arterial expansions keep pace with the projected population increases. Therefore, the Project is consistent with TOP 2050 Policy M1-5. Therefore, no further revisions to the Draft EIR are required.

Response O-1x

Comment noted for the record.

Response O1-y

Comment noted. As discussed in *Section 3.0: Project Description* of the Draft EIR, the Specific Plan is consistent with the land use and zoning designations within the City's TOP 2050. The existing zoning designation for the site is SP (Specific Plan) Zoning District. The SP District designation requires approval of a specific plan by the City for urban development of the project site. The Euclid Mixed-Use Specific Plan will be the zoning for the Project site, consistent with TOP 2050. Therefore, no further revisions to the Draft EIR are required.

Response O1-z

See Response O-1x above.

Response O1-aa

The City disagrees with the assertion that the Draft EIR has not identified and analyzed the potential impact of developing replacement sites for the net loss in residential capacity for 774 units as a result of adopting the Euclid Mixed Use Specific Plan. As discussed in Section 3.0: Project Description of the Draft EIR, the City's TOP 2050 designates the Project site for development of Business Park (BP) at 0.6 FAR, and Mixed-Use (MU) at 14.0 to 65.0 du/ac; 1.5 FAR office; 1.0 FAR retail, and includes portions designated for Open Space-Non-Residential (OS-NR). As analyzed within Section 4.13: Population and Housing of the Draft EIR, the Project would provide 466 high-density residential development which would contribute to the City's RHNA Allocation for the 2021-2029 planning period. The Project site has been identified as a Housing Opportunity Area where residential neighborhoods would be balanced by mixed-use, commercial, and public places and organized around a regional-scale park. The City's housing strategies for this area promote the creation of mixed-income communities in the western Ontario Ranch. The Project would be consistent with the goals and growth projection for the City and the region, which accounts for the 466 planned high-density residential units. While the development of new business associated with Phase I development and the development of new residences associated with Phase II development would directly result in population growth, growth of 1,571 residents would be well within the growth projections assumed for the City and the Southern California Association of Governments (SCAG) region, specifically, 96,900 by 2045 in the City and 674,000 by 2045 in the County (see Table 4.13-2 in Section 4.13: Population and Housing of the Draft EIR,). The Project Specific Plan proposes the same land uses as contained in the City's TOP 2050. Impacts would be less than significant. No mitigation is required other than compliance with applicable plans, policies, and programs, including the proposed Project Specific Plan and TOP 2050. Therefore, the Project would not result in residential capacity loss. No further revisions to the Draft EIR are required.

Response O1-bb

See Response O-1x above.

Response O1-cc

See Response O-1x above.

Response O1-dd

The City disagrees with the assertion that the Draft EIR has not provided any analysis to demonstrate that adoption of the Euclid Mixed Use Specific Plan will yield 338 affordable units in the income categories specified in the Housing Element. As analyzed within Section 4.13: Population and Housing of the Draft EIR, the Project would not cause substantial unplanned population growth in the area. The Project would provide 466 high-density residential development which would contribute to the City's Regional Housing Needs Allocation (RHNA) Allocation for the 2021-2029 planning period. The Project site has been identified as a Housing Opportunity Area where residential neighborhoods would be balanced by mixeduse, commercial, and public places and organized around a regional-scale park. The City's housing strategies for this area promote the creation of mixed-income communities in the western Ontario Ranch. The Project would be consistent with the goals and growth projection for the City and the region. While the development of new business associated with Phase I development and the development of new residences associated with Phase II development would directly result in population growth, growth of 1,571 residents would be well within the growth projections assumed for the City and the SCAG region, specifically, 96,900 by 2045 in the City and 674,000 by 2045 in the County (see Table 4.13-2 in Section 4.13: Population and Housing of the Draft EIR). The Project Specific Plan proposes the same land uses as contained in the City's TOP 2050. Impacts would be less than significant. No mitigation is required other than compliance with applicable plans, policies, and programs, including the proposed Project Specific Plan and TOP 2050. Therefore, no further revisions to the Draft EIR are required.

Response O1-ee

The City disagrees with the assertion that the Draft EIR does not provide a calculation of construction jobs generated by the Project. The Draft EIR determines that the Project would not introduce new population or housing to the Project site as the development would include business park and mixed uses, which would result in jobs for residents in the surrounding area. As stated in *Section 4.13: Population and Housing* of the Draft EIR, the construction phase of the development would generate temporary employment opportunities, including short-term design, engineering, and construction jobs. Construction related jobs would not result in a significant population increase because they are expected to be filled by persons within the local economy. The unemployment rate is approximately 4.1 percent within the jurisdictions in the Project vicinity of the Riverside-San Bernardino-Ontario Metropolitan Area as of 2021. Because many of the employment opportunities are expected to be filled by persons within the local economy, it is anticipated that an adequate number of persons are available to fill the employment positions without constructing new residential units. Furthermore, the small percentage of skilled and managerial positions could either be filled by the local economy or by persons outside the local economy.

Therefore, the implementation of the Project would result in less than significant growth inducement impacts in the Project vicinity.

CEQA does not require that an EIR provide estimates on the demographics and geographic location for qualified workers. As discussed in *Section 4.13: Population and Housing* of the Draft EIR, page 4.13-10, construction phase of the development would generate temporary employment opportunities, including short-term design, engineering, and construction jobs. The forecast increase in Project employment is within SCAG's forecast employment increase for the City, which is 55,400 jobs and the forecast employment increase for the County of San Bernardino, which is 273,000 by 2045 (see Table 4.13-2 in *Section 4.13: Population and Housing* of the Draft EIR). The San Bernardino Council of Governments region is housing rich. The Project would produce more jobs and therefore would support the improvements designated by SCAG in pursuit of an improved jobs-housing-balance for the County. Because the region is housing-rich, it is expected that jobs at the Project site would be drawn from the local and regional labor force. Therefore, no further revisions to the Draft EIR are required.

Response O1-ff

The referenced documents are available for review at the City Planning Department offices.

Response O1-gg

See Response O1-dd above.

Response O1-hh

The City disagrees with the assertion that the Draft EIR "does not provide any cumulative analysis discussion of projects approved since 2016 and projects "in the pipeline" to determine if the project will exceed the employment/population growth forecasts by SCAG and/or the General Plan." As analyzed in Section 4.13: Population and Housing of the Draft EIR, impacts are analyzed using County projections in SCAG's 2020-2045 RTP/SCS Demographics and Growth Forecast. Development of the Project in conjunction with the related project list in Table 4-1: Related Approved and Pending Projects in Section 4.0: Environmental Impact Analysis of the Draft EIR, would not result in cumulative wide population and/or housing impacts, as mixed-use business park projects would further improve the jobshousing balance. This would encourage alignment with objectives set by SCAG's 2020-2045 RTP/SCS as it would increase employment opportunities in an area that is predominantly residential. Furthermore, the Project would be consistent with the goals set forth in TOP 2050 by providing long-term employment opportunities associated with the buildout of the Project. Related projects would be reviewed by the City, and development would be required to be consistent with adopted State and City development standards, regulations, plans, and policies to minimize the effect of the increase in population on physical impacts on the environment. Additionally, the indirect effect of Project employment on housing and population growth in the City has been anticipated in TOP 2050, and therefore in regional housing and population forecasts provided in the 2020-2045 RTP/SCS. As such, the Project would not contribute to cumulatively adverse growth impacts. Upon approval, the Project would improve the jobs-housing balance in the County which is considered a housing-rich area. Therefore, the Project combined with related projects

would not result in cumulatively considerable impacts to population and housing as no substantial new unplanned growth would occur. Therefore, no further revisions to the Draft EIR are required.

Response O1-ii

See Response O1-w above.

Response O1-jj

The City disagrees with the assertion that the VMT analysis has underestimated the proposed projects VMT generation. The VMT analysis was prepared consistent with the City of Ontario's adopted VMT guidelines and thresholds as adopted by City Council in June 2020 (File No.: SB 743 VMT Thresholds). The City's resolution states that SBTAM is the appropriate tool to use when preparing a VMT analysis. As SBTAM was utilized to formulate and establish the City's adopted VMT impact threshold it is appropriate for land use projects follow the methodologies used to establish these thresholds.⁹

In addition, the City disagrees with the assertion that the VMT analysis does not adequately or accurately represent the VMT impacts of the Project. As part of the preparation of the VMT analysis, 1,333 new employees were added to the Project's TAZ to ensure the inclusion of the Project's industrial warehouse uses; therefore, the analysis includes the additional traffic from both passenger cars and trucks associated with the Project's proposed land uses. Furthermore, as noted in the VMT analysis, the City's VMT analysis guidelines require the calculation of total VMT as derived from the SBTAM model's origin/destination (OD) trip matrices. These matrices include internal to internal (II), internal to external (IX), and external to internal (XI) vehicle trips for all vehicle types (i.e., passenger car and commercial vehicles).

Lastly, the truck/trailer component of the Project is anticipated to serve nearby warehouses and distribution facilities that would be seeking to locate overflow truck/trailer storage as close as possible to the primary warehouse or distribution facility. As a result, the trips are expected to be local serving. Therefore, no further revisions to the Draft EIR are required.

Response O1-kk

The City disagrees with the assertion that the Draft EIR has not adequately analyzed the project's potential to substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses; or the project's potential to result in inadequate emergency access. As discussed in *Section 4.15: Transportation and Traffic* of the Draft EIR, page 4.15-24, roadway improvements and installation of driveways that would be implemented during construction of the Project would be required to comply with City Municipal Code Section 7-3.07, which requires that prior to any activity that would encroach into a right-of-way, the area be safeguarded through the installation of safety devices that would be specified by the City's Engineering Department during the construction permitting process to ensure that construction activities would not increase hazards. In the conduct of such activity or encroachment, materials, supplies, excavated material, and equipment shall be properly placed, and the permittee shall provide and maintain such safety devices, including, but not limited to, lights, barricades, signs, and guards, as are necessary to protect the public. Additionally, during

City of Ontario July 2024

⁹ Technical Advisory on Evaluating Transportation Impacts in CEQA. 2018. Page 30-31. Retrieved from: https://opr.ca.gov/docs/20180416-743_Technical_Advisory_4.16.18.pdf.

construction and long-term operation of the Project, adequate emergency access for emergency vehicles would be maintained along public streets that abut the Project site. Access roads to the site would be constructed throughout the Project site for construction staff/inspectors, construction equipment and materials delivery/removal, and emergency response vehicles. The access roads would be kept or maintained in such condition to allow for the safe passage for emergency response vehicles. The City, as part of its discretionary review process, reviewed the Project's application materials to ensure that appropriate emergency ingress and egress would be available to-and-from the Project site and that circulation on the Project site was adequate for emergency vehicles.

The City has adopted an Emergency Operations Plan to identify evacuation routes, emergency facilities, and City personnel and equipment available to effectively deal with emergency situations. No revisions to the adopted Emergency Operations Plan would be required as a result of the Project. The Project includes the construction and/or improvement of 17 driveways to and from the Project site from adjacent roadways. Exhibit 1-4 in the Traffic Analysis (*Appendix I1*) illustrates and describes access to the Project site. The Project's proposed circulation and off-site improvements would be constructed accordingly with Recommendations 1 through 16 listed in the Project Traffic Analysis to accommodate on-site access. Additionally, all roadway improvements would be designed consistently with the City's TOP 2050 Mobility Element programs, plans, goals and policies, and City Traffic and Transportation Guidelines, and PPP TR-1 and PPP TR-2. Therefore, direct access to the Project site would not substantially increase hazards due to geometric design features or dangerous intersections and a less than significant impact would occur. Therefore, no further revisions to the Draft EIR are required.

Response O1-II

See Response O1-kk above.

Response O1-mm

Comment noted. The City disagrees with this assertion. The intent of the Draft EIR is to provide sufficient information on the potential environmental impacts of the Project to allow the City to make an informed decision regarding approval of the Project. The intent and purpose of the Project is to provide zoning regulations for development of the Project site by establishing permitted land use, development standards, infrastructure requirements, and implementation requirements for development. A comprehensive set of design guidelines and development regulations are included to guide and regulate site planning, architectural character, and landscape within the community, ensuring that excellence in community design is achieved during project development. The Draft EIR, as an informational document evaluating the potential environmental impacts of the Project, does not include revisions of the final document. The Specific Plan establishes the procedures and requirements to approve new development within the Project site and does not serve as land entitlement approval for each development project on site. The Project is considered under a Legislative Action Application by the City of Ontario. Any new development within the Specific Plan area would be required to submit a discretionary permit/action application and obtain approval from the City.

Section 3.0: Project Description of the Draft EIR discusses the conceptual grading plan and earthwork analysis. The information provided in **Section 3.0: Project Description** of the Draft EIR regarding grading

plan and earthwork analysis are adequate analysis of the contents within the Specific Plan, and no revisions or recirculation of the Draft EIR is required.

Response O1-nn

Comment noted. The City disagrees with the assertion that the Draft EIR has not provided any analysis of the available horizontal and vertical sight distance at the intersection of the project driveways and adjacent streets. As identified in *Appendix I: Transportation Reports* of the Draft EIR, sight distance at each project access point shall be reviewed with respect to standard Caltrans and City of Ontario sight distance standards at the time of preparation of final grading, landscape, and street improvement plans. Therefore, no further revisions to the Draft EIR are required.

Response O1-oo

See Response O1-pp, below. Further, the Draft EIR cumulative project list was considered to evaluate cumulative impacts per Sections 15130 and 15355 of the State CEQA Guidelines. The Notice of Preparation (NOP) for the Project was distributed on February 10, 2023. The data available at the time of the preparation of the NOP was the most current at that time. Therefore, no further revisions to the Draft EIR are required.

Response O1-pp

The Draft EIR provides cumulative analysis for each focus area in its respective section. Further description in the portion of the Draft EIR referenced in this comment is not necessary. Cumulatively significant effects were individually discussed in each environmental topic area's (*Sections 4.1: Aesthetics* through *4.20: Utilities and Service Systems* of the Draft EIR) Cumulative Impacts subsection. Therefore, no further revisions to the Draft EIR are required.

Response O1-qq

The City disagrees with the commenter's assertion that the Draft EIR has not adequately discussed or analyzed the commitment of resources relating to consistency with regional and local growth forecasts. Additionally, the commenter asserts that the Project would result in air quality and GHG impacts that exceed with the forecasts of the applicable air quality plans (e.g., AQMP). As discussed in Response O1-I, GHG emissions and impacts were fully analyzed within *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR. Based on the discussion therein, the quantitative threshold of 3,000 MTCO₂e threshold raised by the comment is not relevant to Draft EIR's conclusions regarding GHG emissions.

As discussed in Response O1-ee, the forecast increase in Project employment is within SCAG's forecast employment increase for the City of 55,400 and the forecast employment increase for the County of 273,000 by 2045 (see Table 4.13-2 in *Section 4.13: Population and Housing* of the Draft EIR). The Project, including the Specific Plan, has been evaluated for its consistency with relevant goals and policies in TOP 2050 and the SCAG's 2020-2045 RTP/SCS. As discussed in *Section 4.11: Land Use* of the Draft EIR, pages 4.11-9 through 4.11-30, the Project would not conflict with any land use plan, policy, or regulation. The proposed Project Specific Plan proposes the same land uses as contained in the City's TOP 2050. Furthermore, the Project Specific Plan would promote orderly development to coincide with adjacent land

uses. As shown in *Section 4.11: Land Use* of the Draft EIR, Tables 4.11-2 and 4.11-3, the Project embodies the goals and policies in the SCAG adopted the 2020-2045 RTP/SCS and City TOP 2050. No mitigation is required other than compliance with applicable plans, policies and programs, including the proposed Project Specific Plan and TOP 2050. Therefore, the City disagrees with the assertion that the Draft EIR must be revised to ensure that the proposed Project is within the TOP 2050 EIR's analysis.

Cumulative projects could include General Plan amendments and/or zone changes, and modifications to existing land uses. However, such amendments do not necessarily represent an inherent negative effect on the environment, particularly if the proposed changes involve changes in types and intensity of uses, rather than eliminating application of policies that were specifically adopted for the purpose of avoiding or mitigating environmental effects. Past and present cumulative projects do not involve amendments that would eliminate application of policies that were adopted for the purpose of avoiding or mitigating environmental effects. Determining whether any future project might include such amendments and determining the cumulative effects of any such amendments would be speculative since it cannot be known what applications that are not currently filed might request. Thus, it is expected that the land uses of cumulative projects would be consistent with policies that avoid an environmental effect; therefore, cumulatively considerable impacts from cumulative projects related to policy consistency would be less than significant. Therefore, no further revisions to the Draft EIR are required.

Response O1-rr

The City disagrees with the assertion that the Draft EIR does not adequately analyze a 'reasonable range of alternatives. CEQA Guidelines Section 15126.6(a) states: "An EIR shall describe a range of reasonable alternatives to the project, or to the location of the project, which would feasibly attain most of the basic objectives of the project but would avoid or substantially lessen any of the significant effects of the project and evaluate the comparative merits of the alternatives. An EIR need not consider every conceivable alternative to a project. Rather it must consider a reasonable range of potentially feasible alternatives that will foster informed decision making and public participation. An EIR is not required to consider alternatives which are infeasible."

Apart from the analysis of the No Project alternative however, there is no ironclad rule governing the nature or scope of the "reasonable range" of other alternatives to be discussed, other than the "rule of reason" (CEQA Guidelines Section 15126.6(a) & (f); see also *Citizens of Goleta Valley v. Board of Supervisors* (1990); Laurel Heights Improvement Association v. Regents of the University of California (1988)).

What constitutes a "reasonable range" of alternatives will vary with the facts of each project and should be guided only by the purpose of offering substantial environmental advantages over the project proposal which may be "feasibly accomplished in a successful manner" considering the economic, environmental, social and technological factors involved (See *Citizens of Goleta Valley v. Board of Supervisors* (1990) (citing Public Resources Code [PRC] Sections 21002, 21061.1; CEQA Guidelines Section 15364)).

An EIR need not consider every conceivable alternative to a project (CEQA Guidelines Section 15126.6(a); *Mount Shasta Bioregional Ecology Center v. County of Siskiyou (2012)*). The alternatives considered may include alternative approaches, sites, or both (CEQA Guidelines Section 15126.6(a)).

Consistent with this rule of reason, it is generally uncommon (though not strictly prohibited) for an EIR to evaluate only the No Project alternative. In such a case, the Lead Agency has the relatively difficult legal burden of establishing that, given the circumstances at hand, no other feasible alternatives could satisfy the project objectives while resulting in fewer environmental impacts than the proposed project (see *Mount Shasta Bioregional Ecology Center v. County of Siskiyou (2012)*).

In consideration of the above, the inclusion of "only two alternatives beyond the required No Project alternative" (page 22 of Comment Letter) does not, itself, constitute an inadequate range of alternatives.

Additionally, the commenter claims that the "No Project/Existing General Plan Alternative" does not represent an actual alternative to the Project as the "No Project/Existing General Plan Alternative" results in the same quantity and type of development as the proposed Project. As described in Section 6.0: Alternatives of the Draft EIR, page 6-4 and 6-9, the "No Project/Existing General Plan Alternative" is distinct from the "No Project/No Build Alternative" in that, under the "No Project/No Build Alternative," the Project site would not be developed, and no new development would occur. In other words, the existing conditions of the Project site would remain. Accordingly, the "No Project/No Build Alternative" provides a comparison between the environmental impacts of the Project as compared to the current environmental conditions, resulting from not approving or denying the Project. Section 15126.6(e) of the State CEQA Guidelines requires that an EIR evaluate and analyze the impacts of the "No-Project" Alternative. When the project is the revision of an existing land use or regulatory plan, policy or ongoing operation, the no-project alternative is the continuation of the plan, policy, or operation into the future. Therefore, under the "No Project/Existing General Plan Alternative," the current TOP 2050 land uses and zoning would remain in effect. Development in accordance with the existing GTOP 2050 and zoning would occur. The inclusion of both a "No Project/No Build Alternative" and the "No-Project" ("No Project/existing General Plan Alternative") is intended to provide decisionmakers with a reasonable range of alternatives to the Project within the unique parameters of the proposed Project.

In addition, the commenter asserts that the Draft EIR should analyze a "mixed-use project" alternative that "provides affordable housing and local-serving commercial uses that may reduce VMT, GHG emissions, and improve Air Quality." In accordance with CEQA Guidelines Section 15126.6(a), this mixed-use/commercial alternative would not meet the basic project objectives as outlined in **Section 3.0: Project Description** of the Draft EIR, page 3-5 and 3-6. Therefore, no further revision to the alternatives analyzed in the Draft EIR is required.

Response O1-ss

The commenter's request for the Draft EIR's recirculation is noted for the record. However, the commenter has raised no substantial or substantiated criticisms of the Draft EIR which would necessitate recirculation. The commenter's request for subsequent public noticing and hearing information is noted for the record. Therefore, no further revision to the analysis in the Draft EIR is required.

This page intentionally left blank.

Comment Letter O2 - Mitchell M. Tsai (Western States Regional Council of Carpenters [WSRCC])

139 South Hudson Avenue Suite 200 Pasadena, California 91101

VIA E-MAIL

February 5, 2024

P: (626) 314-3821

F: (626) 389-5414

E: info@mitchtsailaw.com

Edmelynne V. Hutter City of Ontario Planning Department 303 East B Street Ontario, CA 91764 Em: ehutter@ontarioca.gov

RE: Western States Regional Council of Carpenters' Comments
Regarding the City of Ontario's Euclid Mixed Use Specific Plan
Project Draft Environmental Impact Report (PSP-22-001) (SCH
No. 2023020281).

Dear Edmelynne V. Hutter:

On behalf of the Western States Regional Council of Carpenters (WSRCC), this office is submitting these comments ahead of the February 6, 2024, deadline for the City of Ontario's ("City") Euclid Mixed Use Specific Plan (PSP-22-001) project ("Project") Draft Environmental Impact Report (DEIR), which has been prepared as a Program Environmental Impact Report.

The Project proposes the development and operation of up to 290,131 square feet of commercial retail and office uses, 466 residential units, and 1,386,776 square feet of business park uses. The 84.1-acre site is located south of Schaefer Avenue, west of Sultana Avenue, north of Edison Avenue, and east of Euclid Avenue ("Site").

WSRCC is a labor union representing roughly 90,000 union carpenters in 10 states, including California, and has a strong interest in well-ordered land use planning and in addressing the environmental impacts of development projects. Individual members of WSRCC live, work, and recreate in the City and surrounding communities and would be directly affected by the Project's environmental impacts.

WSRCC expressly reserves the right to supplement these comments at or prior to hearings on the Project, and at any later hearing and proceeding related to this Project. Gov. Code, § 65009, subd. (b); Pub. Res. Code, § 21177, subd. (a); see *Bakersfield Citizens for Local Control v. Bakersfield* (2004) 124 Cal.App.4th 1184, 1199-1203; see also

a

City of Ontario – Euclid Mixed Use Specific Plan DEIR February 6, 2024 Page 2 of 8

Galante Vineyards v. Monterey Water Dist. (1997) 60 Cal. App. 4th 1109, 1121.

WSRCC incorporates by reference all comments raising issues regarding the DEIR or any other environmental document or analysis submitted prior to certification of the EIR for the Project. See *Citizens for Clean Energy v. City of Woodland* (2014) 225 Cal.App.4th 173, 191 (finding that any party who has objected to the project's environmental documentation may assert any issue timely raised by other parties).

Moreover, WSRCC requests that the City provide notice for any and all notices referring or related to the Project issued under the California Environmental Quality Act (CEQA) (Pub. Res. Code, § 21000 et seq.), and the California Planning and Zoning Law ("Planning and Zoning Law") (Gov. Code, §§ 65000-65010). California Public Resources Code Sections 21092.2, and 21167(f) and California Government Code Section 65092 require agencies to mail such notices to any person who has filed a written request for them with the clerk of the agency's governing body.

I. THE CITY SHOULD INCORPORATE LANGUAGE THAT REQUIRE THE USE OF A LOCAL WORKFORCE TO BENEFIT THE COMMUNITY'S ECONOMIC DEVELOPMENT AND ENVIRONMENT

The City should incorporate language into the proposed Specific Plan requiring residential, commercial and mixed-use developments within the Specific Plan area to be built using local workers who have graduated from a Joint Labor-Management Apprenticeship Program approved by the State of California, have at least as many hours of on-the-job experience in the applicable craft which would be required to graduate from such a state-approved apprenticeship training program, or who are registered apprentices in a state-approved apprenticeship training program.

Community benefits such as local hire can also be helpful to reduce environmental impacts and improve the positive economic impact of the Specific Plan. Local hire provisions requiring that a certain percentage of workers reside within 10 miles or less of projects within the Specific Plan area can reduce the length of vendor trips, reduce greenhouse gas emissions, and provide localized economic benefits. As environmental consultants Matt Hagemann and Paul E. Rosenfeld note:

[A]ny local hire requirement that results in a decreased worker trip length from the default value has the potential to result in a reduction of construction-related GHG emissions, though the significance of the reduction would vary based on the location and urbanization level of the project site.

cont.

b

City of Ontario – Euclid Mixed Use Specific Plan DEIR February 6, 2024 Page 3 of 8

March 8, 2021 SWAPE Letter to Mitchell M. Tsai re Local Hire Requirements and Considerations for Greenhouse Gas Modeling.

Workforce requirements promote the development of skilled trades that yield sustainable economic development. As the California Workforce Development Board and the University of California, Berkeley Center for Labor Research and Education concluded:

[L]abor should be considered an investment rather than a cost and investments in growing, diversifying, and upskilling California's workforce can positively affect returns on climate mitigation efforts. In other words, well-trained workers are key to delivering emissions reductions and moving California closer to its climate targets.¹

Furthermore, workforce policies have significant environmental benefits given that they improve an area's jobs-housing balance, decreasing the amount and length of job commutes and the associated greenhouse gas (GHG) emissions. In fact, on May 7, 2021, the South Coast Air Quality Management District found that that the "[u]se of a local state-certified apprenticeship program" can result in air pollutant reductions.²

Locating jobs closer to residential areas can have significant environmental benefits. As the California Planning Roundtable noted in 2008:

People who live and work in the same jurisdiction would be more likely to take transit, walk, or bicycle to work than residents of less balanced communities and their vehicle trips would be shorter. Benefits would include potential reductions in both vehicle miles traveled and vehicle hours traveled.³

¹ California Workforce Development Board (2020) Putting California on the High Road: Λ Jobs and Climate Action Plan for 2030 at p. ii, available at https://laborcenter.berkeley.edu/wp-content/uploads/2020/09/Putting-California-on-the-High-Road.pdf.

² South Coast Air Quality Management District (May 7, 2021) Certify Final Environmental Assessment and Adopt Proposed Rule 2305 – Warehouse Indirect Source Rule – Warehouse Actions and Investments to Reduce Emissions Program, and Proposed Rule 316 – Fees for Rule 2305, Submit Rule 2305 for Inclusion Into the SIP, and Approve Supporting Budget Actions, available at http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2021/2021-May7-027.pdf?sfvrsn=10.

³ California Planning Roundtable (2008) Deconstructing Jobs-Housing Balance at p. 6, available at https://cproundtable.org/static/media/uploads/publications/cpr-jobs-housing.pdf

City of Ontario – Euclid Mixed Use Specific Plan DEIR February 6, 2024 Page 4 of 8

Moreover, local hire mandates and skill-training are critical facets of a strategy to reduce vehicle miles traveled (VMT). As planning experts Robert Cervero and Michael Duncan have noted, simply placing jobs near housing stock is insufficient to achieve VMT reductions given that the skill requirements of available local jobs must match those held by local residents. Some municipalities have even tied local hire and other workforce policies to local development permits to address transportation issues. Cervero and Duncan note that:

In nearly built-out Berkeley, CA, the approach to balancing jobs and housing is to create local jobs rather than to develop new housing. The city's First Source program encourages businesses to hire local residents, especially for entry- and intermediate-level jobs, and sponsors vocational training to ensure residents are employment-ready. While the program is voluntary, some 300 businesses have used it to date, placing more than 3,000 city residents in local jobs since it was launched in 1986. When needed, these carrots are matched by sticks, since the city is not shy about negotiating corporate participation in First Source as a condition of approval for development permits.

Recently, the State of California verified its commitment towards workforce development through the Affordable Housing and High Road Jobs Act of 2022, otherwise known as Assembly Bill No. 2011 ("**AB2011**"). AB2011 amended the Planning and Zoning Law to allow ministerial, by-right approval for projects being built alongside commercial corridors that meet affordability and labor requirements.

The City should consider utilizing local workforce policies and requirements to benefit the local area economically and to mitigate greenhouse gas, improve air quality, and reduce transportation impacts.

II. THE CITY SHOULD INCORPORATE LANGUAGE IMPOSING TRAINING REQUIREMENTS FOR CONSTRUCTION ACTIVITIES TO PREVENT COMMUNITY SPREAD OF COVID-19 AND OTHER INFECTIOUS DISEASES INTO THE SPECIFIC PLAN.

⁴ Cervero, Robert and Duncan, Michael (2006) Which Reduces Vehicle Travel More: Jobs-Housing Balance or Retail-Housing Mixing? Journal of the American Planning Association 72 (4), 475-490, 482, available at http://reconnectingamerica.org/assets/Uploads/UTCT-825.pdf.

cont.

C

City of Ontario – Euclid Mixed Use Specific Plan DEIR February 6, 2024 Page 5 of 8

Construction work has been defined as a Lower to High-risk activity for COVID-19 spread by the Occupations Safety and Health Administration. Recently, several construction sites have been identified as sources of community spread of COVID-19.⁵

Western Carpenters recommend that the City adopt additional requirements to mitigate public health risks from various residential, commercial and mixed-use development construction activities. Western Carpenters requests that the City require safe on-site construction work practices as well as training and certification for any construction workers on residential, commercial and mixed-use developments within the Specific Plan area.

In particular, based upon Western Carpenters' experience with safe construction site work practices, Western Carpenters recommends that the City require that while construction activities are being conducted within the Specific Plan area:

Construction Site Design:

- The Project Site will be limited to two controlled entry points.
- Entry points will have temperature screening technicians taking temperature readings when the entry point is open.
- The Temperature Screening Site Plan shows details regarding access to the Project Site and Project Site logistics for conducting temperature screening.
- A 48-hour advance notice will be provided to all trades prior to the first day of temperature screening.
- The perimeter fence directly adjacent to the entry points will be clearly marked indicating the appropriate 6-foot social distancing position for when you approach the screening area. Please reference the Apex temperature screening site map for additional details.
- There will be clear signage posted at the project site directing you through temperature screening.

⁵ Santa Clara County Public Health (June 12, 2020) COVID-19 CASES AT CONSTRUCTION SITES HIGHLIGHT NEED FOR CONTINUED VIGILANCE IN SECTORS THAT HAVE REOPENED, available at https://www.sccgov.org/sites/covid19/Pages/press-release-06-12-2020-cases-at-construction-sites.aspx.

City of Ontario – Euclid Mixed Use Specific Plan DEIR February 6, 2024 Page 6 of 8

Provide hand washing stations throughout the construction site.

Testing Procedures:

- The temperature screening being used are non-contact devices.
- Temperature readings will not be recorded.
- Personnel will be screened upon entering the testing center and should only take 1-2 seconds per individual.
- Hard hats, head coverings, sweat, dirt, sunscreen or any other cosmetics must be removed on the forehead before temperature screening.
- Anyone who refuses to submit to a temperature screening or does not answer
 the health screening questions will be refused access to the Project Site.
- Screening will be performed at both entrances from 5:30 am to 7:30 am.; main gate [ZONE 1] and personnel gate [ZONE 2]
- After 7:30 am only the main gate entrance [ZONE 1] will continue to be used for temperature testing for anybody gaining entry to the project site such as returning personnel, deliveries, and visitors.
- If the digital thermometer displays a temperature reading above 100.0 degrees
 Fahrenheit, a second reading will be taken to verify an accurate reading.
- If the second reading confirms an elevated temperature, DHS will instruct the
 individual that he/she will not be allowed to enter the Project Site. DHS will
 also instruct the individual to promptly notify his/her supervisor and his/her
 human resources (HR) representative and provide them with a copy of Annex
 A.

Planning

• Require the development of an Infectious Disease Preparedness and Response Plan that will include basic infection prevention measures (requiring the use of personal protection equipment), policies and procedures for prompt identification and isolation of sick individuals, social distancing (prohibiting gatherings of no more than 10 people including all-hands meetings and allhands lunches) communication and training and workplace controls that meet standards that may be promulgated by the Center for Disease Control,

City of Ontario – Euclid Mixed Use Specific Plan DEIR February 6, 2024 Page 7 of 8

> Occupational Safety and Health Administration, Cal/OSHA, California Department of Public Health or applicable local public health agencies.⁶

The United Brotherhood of Carpenters and Carpenters International Training Fund has developed COVID-19 Training and Certification to ensure that Carpenter union members and apprentices conduct safe work practices. The City should require that all construction workers undergo COVID-19 Training and Certification before being allowed to conduct construction activities at the Project Site.

Western Carpenters has also developed a rigorous Infection Control Risk Assessment (ICRA) training program to ensure it delivers a workforce that understands how to identify and control infection risks by implementing protocols to protect themselves and all others during renovation and construction projects in healthcare environments.⁷

ICRA protocols are intended to contain pathogens, control airflow, and protect patients during the construction, maintenance, and renovation of healthcare facilities. ICRA protocols prevent cross contamination, minimizing the risk of secondary infections in patients at hospital facilities.

The City should incorporate language requiring the residential developments related to the SP be built using a workforce trained in ICRA protocols.

Sincerely

Reza Mohamad Zadeh Attorney for Western States Regional Council of Carpenters

Attached:

⁶ See also The Center for Construction Research and Training, North America's Building Trades Unions (April 27 2020) NABTU and CPWR COVIC-19 Standards for U.S Constructions Sites, available at https://www.cpwr.com/sites/default/files/NABTU_CPWR_Standards_COVID-19.pdf; Los Angeles County Department of Public Works (2020) Guidelines for Construction Sites During COVID-19 Pandemic, available at https://dpw.lacounty.gov/building-and-safety/docs/pw_guidelines-construction-sites.pdf.

⁷ For details concerning Western Carpenters' ICRA training program, see https://icrahealthcare.com/.

City of Ontario — Euclid Mixed Use Specific Plan DEIR February 6, 2024 Page 8 of 8

March 8, 2021 SWAPE Letter to Mitchell M. Tsai re Local Hire Requirements and Considerations for Greenhouse Gas Modeling (Exhibit A);

Air Quality and GHG Expert Paul Rosenfeld CV (Exhibit B);

Air Quality and GHG Expert Matt Hagemann CV (Exhibit C).

EXHIBIT A

2656 29th Street, Suite 201 Santa Monica, CA 90405

Matt Hagemann, P.G, C.Hg. (949) 887-9013 mhagemann@swape.com

> Paul E. Rosenfeld, PhD (310) 795-2335 prosenfeld@swape.com

March 8, 2021

Mitchell M. Tsai 155 South El Molino, Suite 104 Pasadena, CA 91101

Subject: Local Hire Requirements and Considerations for Greenhouse Gas Modeling

Dear Mr. Tsai,

Soil Water Air Protection Enterprise ("SWAPE") is pleased to provide the following draft technical report explaining the significance of worker trips required for construction of land use development projects with respect to the estimation of greenhouse gas ("GHG") emissions. The report will also discuss the potential for local hire requirements to reduce the length of worker trips, and consequently, reduced or mitigate the potential GHG impacts.

Worker Trips and Greenhouse Gas Calculations

The California Emissions Estimator Model ("CalEEMod") is a "statewide land use emissions computer model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantify potential criteria pollutant and greenhouse gas (GHG) emissions associated with both construction and operations from a variety of land use projects." CalEEMod quantifies construction-related emissions associated with land use projects resulting from off-road construction equipment; on-road mobile equipment associated with workers, vendors, and hauling; fugitive dust associated with grading, demolition, truck loading, and on-road vehicles traveling along paved and unpaved roads; and architectural coating activities; and paving.²

The number, length, and vehicle class of worker trips are utilized by CalEEMod to calculate emissions associated with the on-road vehicle trips required to transport workers to and from the Project site during construction.³

¹ "California Emissions Estimator Model." CAPCOA, 2017, available at: http://www.aqmd.gov/caleemod/home.

² "California Emissions Estimator Model." CAPCOA, 2017, available at: http://www.agmd.gov/caleemod/home.

³ "CalEEMod User's Guide." CAPCOA, November 2017, available at: http://www.aqmd.gov/docs/default-source/caleemod/01_user-39-s-guide2016-3-2_15november2017.pdf?sfvrsn=4, p. 34.

Specifically, the number and length of vehicle trips is utilized to estimate the vehicle miles travelled ("VMT") associated with construction. Then, utilizing vehicle-class specific EMFAC 2014 emission factors, CalEEMod calculates the vehicle exhaust, evaporative, and dust emissions resulting from construction-related VMT, including personal vehicles for worker commuting.⁴

Specifically, in order to calculate VMT, CalEEMod multiplies the average daily trip rate by the average overall trip length (see excerpt below):

```
"VMT_d = \Sigma(Average\ Daily\ Trip\ Rate\ _i * Average Overall Trip Length _i) _n Where:
```

n = Number of land uses being modeled."5

Furthermore, to calculate the on-road emissions associated with worker trips, CalEEMod utilizes the following equation (see excerpt below):

```
"Emissions<sub>pollutant</sub> = VMT * EF<sub>running,pollutant</sub>

Where:

Emissions<sub>pollutant</sub> = emissions from vehicle running for each pollutant

VMT = vehicle miles traveled

EF<sub>running,pollutant</sub> = emission factor for running emissions."<sup>6</sup>
```

Thus, there is a direct relationship between trip length and VMT, as well as a direct relationship between VMT and vehicle running emissions. In other words, when the trip length is increased, the VMT and vehicle running emissions increase as a result. Thus, vehicle running emissions can be reduced by decreasing the average overall trip length, by way of a local hire requirement or otherwise.

Default Worker Trip Parameters and Potential Local Hire Requirements

As previously discussed, the number, length, and vehicle class of worker trips are utilized by CalEEMod to calculate emissions associated with the on-road vehicle trips required to transport workers to and from the Project site during construction. In order to understand how local hire requirements and associated worker trip length reductions impact GHG emissions calculations, it is important to consider the CalEEMod default worker trip parameters. CalEEMod provides recommended default values based on site-specific information, such as land use type, meteorological data, total lot acreage, project type and typical equipment associated with project type. If more specific project information is known, the user can change the default values and input project-specific values, but the California Environmental Quality Act ("CEQA") requires that such changes be justified by substantial evidence. The default number of construction-related worker trips is calculated by multiplying the

2

⁴ "Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at: http://www.agmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6, p. 14-15.

⁵ "Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at: http://www.aqmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6, p. 23.

⁶ "Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at: http://www.aqmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6, p. 15.

⁷ "CalEEMod User's Guide." CAPCOA, November 2017, available at: http://www.aqmd.gov/docs/default-source/caleemod/01 user-39-s-guide2016-3-2 15november2017.pdf?sfvrsn=4, p. 34.

⁸ CalEEMod User Guide, available at: http://www.caleemod.com/, p. 1, 9.

number of pieces of equipment for all phases by 1.25, with the exception of worker trips required for the building construction and architectural coating phases. Furthermore, the worker trip vehicle class is a 50/25/25 percent mix of light duty autos, light duty truck class 1 and light duty truck class 2, respectively." Finally, the default worker trip length is consistent with the length of the operational home-to-work vehicle trips. The operational home-to-work vehicle trip lengths are:

"[B]ased on the <u>location</u> and <u>urbanization</u> selected on the project characteristic screen. These values were <u>supplied by the air districts or use a default average for the state</u>. Each district (or county) also assigns trip lengths for urban and rural settings" (emphasis added). ¹²

Thus, the default worker trip length is based on the location and urbanization level selected by the User when modeling emissions. The below table shows the CalEEMod default rural and urban worker trip lengths by air basin (see excerpt below and Attachment A).¹³

Worke	r Trip Length by Air Basin	
Air Basin	Rural (miles)	Urban (miles)
Great Basin Valleys	16.8	10.8
Lake County	16.8	10.8
Lake Tahoe	16.8	10.8
Mojave Desert	16.8	10.8
Mountain Counties	16.8	10.8
North Central Coast	17.1	12.3
North Coast	16.8	10.8
Northeast Plateau	16.8	10.8
Sacramento Valley	16.8	10.8
Salton Sea	14.6	11
San Diego	16.8	10.8
San Francisco Bay Area	10.8	10.8
San Joaquin Valley	16.8	10.8
South Central Coast	16.8	10.8
South Coast	19.8	14.7
Average	16.47	11.17
Minimum	10.80	10.80
Maximum	19.80	14.70
Range	9.00	3.90

⁹ "CalEEMod User's Guide." CAPCOA, November 2017, available at: http://www.aqmd.gov/docs/default-source/caleemod/01 user-39-s-guide2016-3-2 15november2017.pdf?sfvrsn=4, p. 34.

¹⁰ "Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, *available at*: http://www.agmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6, p. 15.

^{11 &}quot;Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at: http://www.agmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6, p. 14.

http://www.aqmd.gov/docs/default-source/caleemod/UZ appendix-a2016-3-2.pdf/sfvrsn=6, p. 14 appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at:

http://www.aqmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6, p. 21.

¹³ "Appendix D Default Data Tables." CAPCOA, October 2017, available at: http://www.aqmd.gov/docs/default-source/caleemod/05 appendix-d2016-3-2.pdf?sfvrsn=4, p. D-84 – D-86.

As demonstrated above, default rural worker trip lengths for air basins in California vary from 10.8- to 19.8-miles, with an average of 16.47 miles. Furthermore, default urban worker trip lengths vary from 10.8- to 14.7-miles, with an average of 11.17 miles. Thus, while default worker trip lengths vary by location, default urban worker trip lengths tend to be shorter in length. Based on these trends evident in the CalEEMod default worker trip lengths, we can reasonably assume that the efficacy of a local hire requirement is especially dependent upon the urbanization of the project site, as well as the project location.

Practical Application of a Local Hire Requirement and Associated Impact

To provide an example of the potential impact of a local hire provision on construction-related GHG emissions, we estimated the significance of a local hire provision for the Village South Specific Plan ("Project") located in the City of Claremont ("City"). The Project proposed to construct 1,000 residential units, 100,000-SF of retail space, 45,000-SF of office space, as well as a 50-room hotel, on the 24-acre site. The Project location is classified as Urban and lies within the Los Angeles-South Coast County. As a result, the Project has a default worker trip length of 14.7 miles. In an effort to evaluate the potential for a local hire provision to reduce the Project's construction-related GHG emissions, we prepared an updated model, reducing all worker trip lengths to 10 miles (see Attachment B). Our analysis estimates that if a local hire provision with a 10-mile radius were to be implemented, the GHG emissions associated with Project construction would decrease by approximately 17% (see table below and Attachment C).

Local Hire Provision Net Change								
Without Local Hire Provision								
Total Construction GHG Emissions (MT CO₂e)	3,623							
Amortized Construction GHG Emissions (MT CO₂e/year)	120.77							
With Local Hire Provision								
Total Construction GHG Emissions (MT CO2e)	3,024							
Amortized Construction GHG Emissions (MT CO₂e/year)	100.80							
% Decrease in Construction-related GHG Emissions	17%							

As demonstrated above, by implementing a local hire provision requiring 10 mile worker trip lengths, the Project could reduce potential GHG emissions associated with construction worker trips. More broadly, any local hire requirement that results in a decreased worker trip length from the default value has the potential to result in a reduction of construction-related GHG emissions, though the significance of the reduction would vary based on the location and urbanization level of the project site.

This serves as an example of the potential impacts of local hire requirements on estimated project-level GHG emissions, though it does not indicate that local hire requirements would result in reduced construction-related GHG emission for all projects. As previously described, the significance of a local hire requirement depends on the worker trip length enforced and the default worker trip length for the project's urbanization level and location.

^{14 &}quot;Appendix D Default Data Tables." CAPCOA, October 2017, available at: http://www.aqmd.gov/docs/default-source/caleemod/05 appendix-d2016-3-2.pdf?sfvrsn=4, p. D-85.

Disclaimer

SWAPE has received limited discovery. Additional information may become available in the future; thus, we retain the right to revise or amend this report when additional information becomes available. Our professional services have been performed using that degree of care and skill ordinarily exercised, under similar circumstances, by reputable environmental consultants practicing in this or similar localities at the time of service. No other warranty, expressed or implied, is made as to the scope of work, work methodologies and protocols, site conditions, analytical testing results, and findings presented. This report reflects efforts which were limited to information that was reasonably accessible at the time of the work, and may contain informational gaps, inconsistencies, or otherwise be incomplete due to the unavailability or uncertainty of information obtained or provided by third parties.

Sincerely,

M (freem.
Matt Hagemann, P.G., C.Hg.

Paul E. Rosenfeld, Ph.D.

5

Attachment A

Location Type	Location Name	Rural H-W (miles)	Urban H-W (miles)
Air Basin	Great Basin	16.8	10.8
Air Basin	Lake County	16.8	10.8
Air Basin	Lake Tahoe	16.8	10.8
Air Basin	Mojave Desert	16.8	10.8
Air Basin	Mountain	16.8	10.8
Air Basin	North Central	17.1	12.3
Air Basin	North Coast	16.8	10.8
Air Basin	Northeast	16.8	10.8
Air Basin	Sacramento	16.8	10.8
Air Basin	Salton Sea	14.6	11
Air Basin	San Diego	16.8	10.8
Air Basin	San Francisco	10.8	10.8
Air Basin	San Joaquin	16.8	10.8
Air Basin	South Central	16.8	10.8
Air Basin	South Coast	19.8	14.7
Air District	Amador County	16.8	10.8
Air District	Antelope Valley	16.8	10.8
Air District	Bay Area AQMD	10.8	10.8
Air District	Butte County	12.54	12.54
Air District	Calaveras	16.8	10.8
Air District	Colusa County	16.8	10.8
Air District	El Dorado	16.8	10.8
Air District	Feather River	16.8	10.8
Air District	Glenn County	16.8	10.8
Air District	Great Basin	16.8	10.8
Air District	Imperial County	10.2	7.3
Air District	Kern County	16.8	10.8
Air District	Lake County	16.8	10.8
Air District	Lassen County	16.8	10.8
Air District	Mariposa	16.8	10.8
Air District	Mendocino	16.8	10.8
Air District	Modoc County	16.8	10.8
Air District	Mojave Desert	16.8	10.8
Air District	Monterey Bay	16.8	10.8
Air District	North Coast	16.8	10.8
Air District	Northern Sierra	16.8	10.8
Air District	Northern	16.8	10.8
Air District	Placer County	16.8	10.8
Air District	Sacramento	15	10

Air District	San Diego	16.8	10.8
Air District	San Joaquin	16.8	10.8
Air District	San Luis Obispo	13	13
Air District	Santa Barbara	8.3	8.3
Air District	Shasta County	16.8	10.8
Air District	Siskiyou County	16.8	10.8
Air District	South Coast	19.8	14.7
Air District	Tehama County	16.8	10.8
Air District	Tuolumne	16.8	10.8
Air District	Ventura County	16.8	10.8
Air District	Yolo/Solano	15	10
County	Alameda	10.8	10.8
County	Alpine	16.8	10.8
County	Amador	16.8	10.8
County	Butte	12.54	12.54
County	Calaveras	16.8	10.8
County	Colusa	16.8	10.8
County	Contra Costa	10.8	10.8
County	Del Norte	16.8	10.8
County	El Dorado-Lake	16.8	10.8
County	El Dorado-	16.8	10.8
County	Fresno	16.8	10.8
County	Glenn	16.8	10.8
County	Humboldt	16.8	10.8
County	Imperial	10.2	7.3
County	Inyo	16.8	10.8
County	Kern-Mojave	16.8	10.8
County	Kern-San	16.8	10.8
County	Kings	16.8	10.8
County	Lake	16.8	10.8
County	Lassen	16.8	10.8
County	Los Angeles-	16.8	10.8
County	Los Angeles-	19.8	14.7
County	Madera	16.8	10.8
County	Marin	10.8	10.8
County	Mariposa	16.8	10.8
County	Mendocino-	16.8	10.8
County	Mendocino-	16.8	10.8
County	Mendocino-	16.8	10.8
County	Mendocino-	16.8	10.8
County	Merced	16.8	10.8
County	Modoc	16.8	10.8
County	Mono	16.8	10.8
County	Monterey	16.8	10.8
County	Napa	10.8	10.8

County	Nevada	16.8	10.8
County	Orange	19.8	14.7
County	Placer-Lake	16.8	10.8
County	Placer-Mountain	16.8	10.8
County	Placer-	16.8	10.8
County	Plumas	16.8	10.8
County	Riverside-	16.8	10.8
County	Riverside-	19.8	14.7
County	Riverside-Salton	14.6	11
County	Riverside-South	19.8	14.7
County	Sacramento	15	10
County	San Benito	16.8	10.8
County	San Bernardino-	16.8	10.8
County	San Bernardino-	19.8	14.7
County	San Diego	16.8	10.8
County	San Francisco	10.8	10.8
County	San Joaquin	16.8	10.8
County	San Luis Obispo	13	13
County	San Mateo	10.8	10.8
County	Santa Barbara-	8.3	8.3
County	Santa Barbara-	8.3	8.3
County	Santa Clara	10.8	10.8
County	Santa Cruz	16.8	10.8
County	Shasta	16.8	10.8
County	Sierra	16.8	10.8
County	Siskiyou	16.8	10.8
County	Solano-	15	10
County	Solano-San	16.8	10.8
County	Sonoma-North	16.8	10.8
County	Sonoma-San	10.8	10.8
County	Stanislaus	16.8	10.8
County	Sutter	16.8	10.8
County	Tehama	16.8	10.8
County	Trinity	16.8	10.8
County	Tulare	16.8	10.8
County	Tuolumne	16.8	10.8
County	Ventura	16.8	10.8
County	Yolo	15	10
County	Yuba	16.8	10.8
Statewide	Statewide	16.8	10.8

Worker	Trip Length by Air Basin					
Air Basin	Air Basin Rural (miles)					
Great Basin Valleys	16.8	10.8				
Lake County	16.8	10.8				
Lake Tahoe	16.8	10.8				
Mojave Desert	16.8	10.8				
Mountain Counties	16.8	10.8				
North Central Coast	17.1	12.3				
North Coast	16.8	10.8				
Northeast Plateau	16.8	10.8				
Sacramento Valley	16.8	10.8				
Salton Sea	14.6	11				
San Diego	16.8	10.8				
San Francisco Bay Area	10.8	10.8				
San Joaquin Valley	16.8	10.8				
South Central Coast	16.8	10.8				
South Coast	19.8	14.7				
Average	16.47	11.17				
Mininum	10.80	10.80				
Maximum	19.80	14.70				
Range	9.00	3.90				

Attachment B

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Village South Specific Plan (Proposed) Los Angeles-South Coast County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	45.00	1000sqft	1.03	45,000.00	0
High Turnover (Sit Down Restaurant)	36.00	1000sqft	0.83	36,000.00	0
Hotel	Hotel 50.00		1.67	72,600.00	0
Quality Restaurant	8.00	1000sqft	0.18	8,000.00	0
Apartments Low Rise	25.00	Dwelling Unit	1.56	25,000.00	72
Apartments Mid Rise 975.00		Dwelling Unit	25.66	975,000.00	2789
Regional Shopping Center	56.00	1000sqft	1.29	56,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	9			Operational Year	2028
Utility Company	Southern California Ediso	on			
CO2 Intensity (lb/MWhr)	702.44	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (lb/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

 $\label{lem:construction} \textbf{Construction Phase - See SWAPE comment regarding individual construction phase lengths.}$

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use -

 $Construction\ Off-road\ Equipment\ Mitigation\ -\ See\ SWAPE\ comment\ on\ construction-related\ mitigation.$

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

Table Name	Column Name	Default Value	New Value		
tblFireplaces	FireplaceWoodMass	1,019.20	0.00		
tblFireplaces	FireplaceWoodMass	1,019.20	0.00		
tblFireplaces	NumberWood	1.25	0.00		
tblFireplaces	NumberWood	48.75	0.00		
tblVehicleTrips	ST_TR	7.16	6.17		
tblVehicleTrips	ST_TR	6.39	3.87		
tblVehicleTrips	ST_TR	2.46	1.39		
tblVehicleTrips	ST_TR	158.37	79.82		
tblVehicleTrips	ST_TR	8.19	3.75		
tblVehicleTrips	ST_TR	94.36	63.99		
tblVehicleTrips	ST_TR	49.97	10.74		
tblVehicleTrips	SU_TR	6.07	6.16		
tblVehicleTrips	SU_TR	5.86	4.18		
tblVehicleTrips	SU_TR	1.05	0.69		
tblVehicleTrips	SU_TR	131.84	78.27		

CalEEMod Version: CalEEMod.2016.3.2 Page 3 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

tblVehicleTrips	SU_TR	5.95	3.20
tblVehicleTrips	SU_TR	72.16	57.65
tblVehicleTrips	SU_TR	25.24	6.39
tblVehicleTrips	WD_TR	6.59	5.83
tblVehicleTrips	WD_TR	6.65	4.13
tblVehicleTrips	WD_TR	11.03	6.41
tblVehicleTrips	WD_TR	127.15	65.80
tblVehicleTrips	WD_TR	8.17	3.84
tblVehicleTrips	WD_TR	89.95	62.64
tblVehicleTrips	WD_TR	42.70	9.43
tblWoodstoves	NumberCatalytic	1.25	0.00
tblWoodstoves	NumberCatalytic	48.75	0.00
tblWoodstoves	NumberNoncatalytic	1.25	0.00
tblWoodstoves	NumberNoncatalytic	48.75	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00
L	<u> </u>		

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2016.3.2 Page 4 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.1 Overall Construction Unmitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year		tons/yr							MT/yr							
2021	0.1713	1.8242	1.1662	2.4000e- 003	0.4169	0.0817	0.4986	0.1795	0.0754	0.2549	0.0000	213.1969	213.1969	0.0601	0.0000	214.6993
2022	0.6904	4.1142	6.1625	0.0189	1.3058	0.1201	1.4259	0.3460	0.1128	0.4588	0.0000	1,721.682 6	1,721.682 6	0.1294	0.0000	1,724.91 7
2023	0.6148	3.3649	5.6747	0.0178	1.1963	0.0996	1.2959	0.3203	0.0935	0.4138	0.0000	1,627.529 5	1,627.529 5	0.1185	0.0000	1,630.49 5
2024	4.1619	0.1335	0.2810	5.9000e- 004	0.0325	6.4700e- 003	0.0390	8.6300e- 003	6.0400e- 003	0.0147	0.0000	52.9078	52.9078	8.0200e- 003	0.0000	53.1082
Maximum	4.1619	4.1142	6.1625	0.0189	1.3058	0.1201	1.4259	0.3460	0.1128	0.4588	0.0000	1,721.682 6	1,721.682 6	0.1294	0.0000	1,724.918 7

CalEEMod Version: CalEEMod.2016.3.2 Page 5 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.1 Overall Construction Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year		tons/yr										M	Г/уг			
2021	0.1713	1.8242	1.1662	2.4000e- 003	0.4169	0.0817	0.4986	0.1795	0.0754	0.2549	0.0000	213.1967	213.1967	0.0601	0.0000	214.699
2022	0.6904	4.1142	6.1625	0.0189	1.3058	0.1201	1.4259	0.3460	0.1128	0.4588	0.0000	1,721.682 3	1,721.682 3	0.1294	0.0000	1,724.91 3
2023	0.6148	3.3648	5.6747	0.0178	1.1963	0.0996	1.2959	0.3203	0.0935	0.4138	0.0000	1,627.529 1	1,627.529 1	0.1185	0.0000	1,630.49 1
2024	4.1619	0.1335	0.2810	5.9000e- 004	0.0325	6.4700e- 003	0.0390	8.6300e- 003	6.0400e- 003	0.0147	0.0000	52.9077	52.9077	8.0200e- 003	0.0000	53.1082
Maximum	4.1619	4.1142	6.1625	0.0189	1.3058	0.1201	1.4259	0.3460	0.1128	0.4588	0.0000	1,721.682 3	1,721.682 3	0.1294	0.0000	1,724.91
8	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	9-1-2021	11-30-2021	1.4103	1.4103
2	12-1-2021	2-28-2022	1.3613	1.3613
3	3-1-2022	5-31-2022	1.1985	1.1985
4	6-1-2022	8-31-2022	1.1921	1.1921
5	9-1-2022	11-30-2022	1.1918	1.1918
6	12-1-2022	2-28-2023	1.0774	1.0774
7	3-1-2023	5-31-2023	1.0320	1.0320
8	6-1-2023	8-31-2023	1.0260	1.0260

Page 6 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

9	9-1-2023	11-30-2023	1.0265	1.0265
10	12-1-2023	2-29-2024	2.8857	2.8857
11	3-1-2024	5-31-2024	1.6207	1.6207
		Highest	2.8857	2.8857

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ıs/yr							МТ	/yr		
Area	5.1437	0.2950	10.3804	1.6700e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.583
Energy	0.1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	3,896.073 2	3,896.073 2	0.1303	0.0468	3,913.28 3
Mobile	1.5857	7.9962	19.1834	0.0821	7.7979	0.0580	7.8559	2.0895	0.0539	2.1434	0.0000	7,620.498 6	7,620.498 6	0.3407	0.0000	7,629.01 2
Waste	:					0.0000	0.0000		0.0000	0.0000	207.8079	0.0000	207.8079	12.2811	0.0000	514.835
Water	:					0.0000	0.0000		0.0000	0.0000	29.1632	556.6420	585.8052	3.0183	0.0755	683.756
Total	6.8692	9.5223	30.3407	0.0914	7.7979	0.2260	8.0240	2.0895	0.2219	2.3114	236.9712	12,294.18 07	12,531.15 19	15.7904	0.1260	12,963.4 51

CalEEMod Version: CalEEMod.2016.3.2 Page 7 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.2 Overall Operational Mitigated Operational

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Area	5.1437	0.2950	10.3804	1.6700e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.5835
Energy	0.1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	3,896.073 2	3,896.073 2	0.1303	0.0468	3,913.283 3
Mobile	1.5857	7.9962	19.1834	0.0821	7.7979	0.0580	7.8559	2.0895	0.0539	2.1434	0.0000	7,620.498 6	7,620.498 6	0.3407	0.0000	7,629.016 2
Waste	:					0.0000	0.0000		0.0000	0.0000	207.8079	0.0000	207.8079	12.2811	0.0000	514.8354
Water	:					0.0000	0.0000		0.0000	0.0000	29.1632	556.6420	585.8052	3.0183	0.0755	683.7567
Total	6.8692	9.5223	30.3407	0.0914	7.7979	0.2260	8.0240	2.0895	0.2219	2.3114	236.9712	12,294.18 07	12,531.15 19	15.7904	0.1260	12,963.47 51

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Page 8 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	9/1/2021	10/12/2021	5	30	Control Scott (Control Control
2	Site Preparation	Site Preparation	10/13/2021	11/9/2021	5	20	
3	Grading	Grading	11/10/2021	1/11/2022	5	45	
4	Building Construction	Building Construction	1/12/2022	12/12/2023	5	500	
5	Paving	Paving	12/13/2023	1/30/2024	5	35	
6	Architectural Coating	Architectural Coating	1/31/2024	3/19/2024	5	35	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Page 9 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Excavators	3	8.00	158	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Page 10 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	0.00	458.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	7	18.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	801.00	143.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	160.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2021

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Fugitive Dust					0.0496	0.0000	0.0496	7.5100e- 003	0.0000	7.5100e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0475	0.4716	0.3235	5.8000e- 004		0.0233	0.0233		0.0216	0.0216	0.0000	51.0012	51.0012	0.0144	0.0000	51.3601
Total	0.0475	0.4716	0.3235	5.8000e- 004	0.0496	0.0233	0.0729	7.5100e- 003	0.0216	0.0291	0.0000	51.0012	51.0012	0.0144	0.0000	51.3601

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.2 Demolition - 2021 Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Hauling	1.9300e- 003	0.0634	0.0148	1.8000e- 004	3.9400e- 003	1.9000e- 004	4.1300e- 003	1.0800e- 003	1.8000e- 004	1.2600e- 003	0.0000	17.4566	17.4566	1.2100e- 003	0.0000	17.4869
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	9.7000e- 004	7.5000e- 004	8.5100e- 003	2.0000e- 005	2.4700e- 003	2.0000e- 005	2.4900e- 003	6.5000e- 004	2.0000e- 005	6.7000e- 004	0.0000	2.2251	2.2251	7.0000e- 005	0.0000	2.2267
Total	2.9000e- 003	0.0641	0.0233	2.0000e- 004	6.4100e- 003	2.1000e- 004	6.6200e- 003	1.7300e- 003	2.0000e- 004	1.9300e- 003	0.0000	19.6816	19.6816	1.2800e- 003	0.0000	19.7136

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Fugitive Dust					0.0496	0.0000	0.0496	7.5100e- 003	0.0000	7.5100e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0475	0.4716	0.3235	5.8000e- 004		0.0233	0.0233		0.0216	0.0216	0.0000	51.0011	51.0011	0.0144	0.0000	51.3600
Total	0.0475	0.4716	0.3235	5.8000e- 004	0.0496	0.0233	0.0729	7.5100e- 003	0.0216	0.0291	0.0000	51.0011	51.0011	0.0144	0.0000	51.3600

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.2 Demolition - 2021 Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Hauling	1.9300e- 003	0.0634	0.0148	1.8000e- 004	3.9400e- 003	1.9000e- 004	4.1300e- 003	1.0800e- 003	1.8000e- 004	1.2600e- 003	0.0000	17.4566	17.4566	1.2100e- 003	0.0000	17.4869
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	9.7000e- 004	7.5000e- 004	8.5100e- 003	2.0000e- 005	2.4700e- 003	2.0000e- 005	2.4900e- 003	6.5000e- 004	2.0000e- 005	6.7000e- 004	0.0000	2.2251	2.2251	7.0000e- 005	0.0000	2.2267
Total	2.9000e- 003	0.0641	0.0233	2.0000e- 004	6.4100e- 003	2.1000e- 004	6.6200e- 003	1.7300e- 003	2.0000e- 004	1.9300e- 003	0.0000	19.6816	19.6816	1.2800e- 003	0.0000	19.7136

3.3 Site Preparation - 2021 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					0.1807	0.0000	0.1807	0.0993	0.0000	0.0993	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0389	0.4050	0.2115	3.8000e- 004		0.0204	0.0204		0.0188	0.0188	0.0000	33.4357	33.4357	0.0108	0.0000	33.7061
Total	0.0389	0.4050	0.2115	3.8000e- 004	0.1807	0.0204	0.2011	0.0993	0.0188	0.1181	0.0000	33.4357	33.4357	0.0108	0.0000	33.7061

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.3 Site Preparation - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.7000e- 004	6.0000e- 004	6.8100e- 003	2.0000e- 005	1.9700e- 003	2.0000e- 005	1.9900e- 003	5.2000e- 004	1.0000e- 005	5.4000e- 004	0.0000	1.7801	1.7801	5.0000e- 005	0.0000	1.7814
Total	7.7000e- 004	6.0000e- 004	6.8100e- 003	2.0000e- 005	1.9700e- 003	2.0000e- 005	1.9900e- 003	5.2000e- 004	1.0000e- 005	5.4000e- 004	0.0000	1.7801	1.7801	5.0000e- 005	0.0000	1.7814

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Fugitive Dust					0.1807	0.0000	0.1807	0.0993	0.0000	0.0993	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0389	0.4050	0.2115	3.8000e- 004		0.0204	0.0204		0.0188	0.0188	0.0000	33.4357	33.4357	0.0108	0.0000	33.7060
Total	0.0389	0.4050	0.2115	3.8000e- 004	0.1807	0.0204	0.2011	0.0993	0.0188	0.1181	0.0000	33.4357	33.4357	0.0108	0.0000	33.7060

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.3 Site Preparation - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.7000e- 004	6.0000e- 004	6.8100e- 003	2.0000e- 005	1.9700e- 003	2.0000e- 005	1.9900e- 003	5.2000e- 004	1.0000e- 005	5.4000e- 004	0.0000	1.7801	1.7801	5.0000e- 005	0.0000	1.7814
Total	7.7000e- 004	6.0000e- 004	6.8100e- 003	2.0000e- 005	1.9700e- 003	2.0000e- 005	1.9900e- 003	5.2000e- 004	1.0000e- 005	5.4000e- 004	0.0000	1.7801	1.7801	5.0000e- 005	0.0000	1.7814

3.4 Grading - 2021 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Fugitive Dust					0.1741	0.0000	0.1741	0.0693	0.0000	0.0693	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0796	0.8816	0.5867	1.1800e- 003		0.0377	0.0377		0.0347	0.0347	0.0000	103.5405	103.5405	0.0335	0.0000	104.3776
Total	0.0796	0.8816	0.5867	1.1800e- 003	0.1741	0.0377	0.2118	0.0693	0.0347	0.1040	0.0000	103.5405	103.5405	0.0335	0.0000	104.3776

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2021 Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.6400e- 003	1.2700e- 003	0.0144	4.0000e- 005	4.1600e- 003	3.0000e- 005	4.2000e- 003	1.1100e- 003	3.0000e- 005	1.1400e- 003	0.0000	3.7579	3.7579	1.1000e- 004	0.0000	3.7607
Total	1.6400e- 003	1.2700e- 003	0.0144	4.0000e- 005	4.1600e- 003	3.0000e- 005	4.2000e- 003	1.1100e- 003	3.0000e- 005	1.1400e- 003	0.0000	3.7579	3.7579	1.1000e- 004	0.0000	3.7607

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Fugitive Dust					0.1741	0.0000	0.1741	0.0693	0.0000	0.0693	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0796	0.8816	0.5867	1.1800e- 003		0.0377	0.0377		0.0347	0.0347	0.0000	103.5403	103.5403	0.0335	0.0000	104.3775
Total	0.0796	0.8816	0.5867	1.1800e- 003	0.1741	0.0377	0.2118	0.0693	0.0347	0.1040	0.0000	103.5403	103.5403	0.0335	0.0000	104.3775

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.6400e- 003	1.2700e- 003	0.0144	4.0000e- 005	4.1600e- 003	3.0000e- 005	4.2000e- 003	1.1100e- 003	3.0000e- 005	1.1400e- 003	0.0000	3.7579	3.7579	1.1000e- 004	0.0000	3.7607
Total	1.6400e- 003	1.2700e- 003	0.0144	4.0000e- 005	4.1600e- 003	3.0000e- 005	4.2000e- 003	1.1100e- 003	3.0000e- 005	1.1400e- 003	0.0000	3.7579	3.7579	1.1000e- 004	0.0000	3.7607

3.4 Grading - 2022 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Fugitive Dust					0.0807	0.0000	0.0807	0.0180	0.0000	0.0180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0127	0.1360	0.1017	2.2000e- 004		5.7200e- 003	5.7200e- 003		5.2600e- 003	5.2600e- 003	0.0000	19.0871	19.0871	6.1700e- 003	0.0000	19.2414
Total	0.0127	0.1360	0.1017	2.2000e- 004	0.0807	5.7200e- 003	0.0865	0.0180	5.2600e- 003	0.0233	0.0000	19.0871	19.0871	6.1700e- 003	0.0000	19.2414

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2022 Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.8000e- 004	2.1000e- 004	2.4400e- 003	1.0000e- 005	7.7000e- 004	1.0000e- 005	7.7000e- 004	2.0000e- 004	1.0000e- 005	2.1000e- 004	0.0000	0.6679	0.6679	2.0000e- 005	0.0000	0.6684
Total	2.8000e- 004	2.1000e- 004	2.4400e- 003	1.0000e- 005	7.7000e- 004	1.0000e- 005	7.7000e- 004	2.0000e- 004	1.0000e- 005	2.1000e- 004	0.0000	0.6679	0.6679	2.0000e- 005	0.0000	0.6684

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МП	∏/yr		
Fugitive Dust					0.0807	0.0000	0.0807	0.0180	0.0000	0.0180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0127	0.1360	0.1017	2.2000e- 004		5.7200e- 003	5.7200e- 003		5.2600e- 003	5.2600e- 003	0.0000	19.0871	19.0871	6.1700e- 003	0.0000	19.2414
Total	0.0127	0.1360	0.1017	2.2000e- 004	0.0807	5.7200e- 003	0.0865	0.0180	5.2600e- 003	0.0233	0.0000	19.0871	19.0871	6.1700e- 003	0.0000	19.2414

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2022 Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.8000e- 004	2.1000e- 004	2.4400e- 003	1.0000e- 005	7.7000e- 004	1.0000e- 005	7.7000e- 004	2.0000e- 004	1.0000e- 005	2.1000e- 004	0.0000	0.6679	0.6679	2.0000e- 005	0.0000	0.6684
Total	2.8000e- 004	2.1000e- 004	2.4400e- 003	1.0000e- 005	7.7000e- 004	1.0000e- 005	7.7000e- 004	2.0000e- 004	1.0000e- 005	2.1000e- 004	0.0000	0.6679	0.6679	2.0000e- 005	0.0000	0.6684

3.5 Building Construction - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr									MT/yr						
Off-Road	0.2158	1.9754	2.0700	3.4100e- 003		0.1023	0.1023		0.0963	0.0963	0.0000	293.1324	293.1324	0.0702	0.0000	294.8881
Total	0.2158	1.9754	2.0700	3.4100e- 003		0.1023	0.1023		0.0963	0.0963	0.0000	293.1324	293.1324	0.0702	0.0000	294.8881

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2022 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	tons/yr										MT/yr						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Vendor	0.0527	1.6961	0.4580	4.5500e- 003	0.1140	3.1800e- 003	0.1171	0.0329	3.0400e- 003	0.0359	0.0000	441.9835	441.9835	0.0264	0.0000	442.6435	
Worker	0.4088	0.3066	3.5305	0.0107	1.1103	8.8700e- 003	1.1192	0.2949	8.1700e- 003	0.3031	0.0000	966.8117	966.8117	0.0266	0.0000	967.4773	
Total	0.4616	2.0027	3.9885	0.0152	1.2243	0.0121	1.2363	0.3278	0.0112	0.3390	0.0000	1,408.795 2	1,408.795 2	0.0530	0.0000	1,410.120 8	

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr									MT/yr						
Off-Road	0.2158	1.9754	2.0700	3.4100e- 003		0.1023	0.1023		0.0963	0.0963	0.0000	293.1321	293.1321	0.0702	0.0000	294.8877
Total	0.2158	1.9754	2.0700	3.4100e- 003		0.1023	0.1023		0.0963	0.0963	0.0000	293.1321	293.1321	0.0702	0.0000	294.8877

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2022 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0527	1.6961	0.4580	4.5500e- 003	0.1140	3.1800e- 003	0.1171	0.0329	3.0400e- 003	0.0359	0.0000	441.9835	441.9835	0.0264	0.0000	442.6435
Worker	0.4088	0.3066	3.5305	0.0107	1.1103	8.8700e- 003	1.1192	0.2949	8.1700e- 003	0.3031	0.0000	966.8117	966.8117	0.0266	0.0000	967.4773
Total	0.4616	2.0027	3.9885	0.0152	1.2243	0.0121	1.2363	0.3278	0.0112	0.3390	0.0000	1,408.795 2	1,408.795 2	0.0530	0.0000	1,410.120 8

3.5 Building Construction - 2023 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr	v	
Off-Road	0.1942	1.7765	2.0061	3.3300e- 003		0.0864	0.0864		0.0813	0.0813	0.0000	286.2789	286.2789	0.0681	0.0000	287.9814
Total	0.1942	1.7765	2.0061	3.3300e- 003		0.0864	0.0864		0.0813	0.0813	0.0000	286.2789	286.2789	0.0681	0.0000	287.9814

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2023 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	∏/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0382	1.2511	0.4011	4.3000e- 003	0.1113	1.4600e- 003	0.1127	0.0321	1.4000e- 003	0.0335	0.0000	417.9930	417.9930	0.0228	0.0000	418.5624
Worker	0.3753	0.2708	3.1696	0.0101	1.0840	8.4100e- 003	1.0924	0.2879	7.7400e- 003	0.2957	0.0000	909.3439	909.3439	0.0234	0.0000	909.9291
Total	0.4135	1.5218	3.5707	0.0144	1.1953	9.8700e- 003	1.2051	0.3200	9.1400e- 003	0.3292	0.0000	1,327.336 9	1,327.336 9	0.0462	0.0000	1,328.491 6

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.1942	1.7765	2.0061	3.3300e- 003		0.0864	0.0864		0.0813	0.0813	0.0000	286.2785	286.2785	0.0681	0.0000	287.9811
Total	0.1942	1.7765	2.0061	3.3300e- 003		0.0864	0.0864		0.0813	0.0813	0.0000	286.2785	286.2785	0.0681	0.0000	287.9811

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2023 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	∏/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0382	1.2511	0.4011	4.3000e- 003	0.1113	1.4600e- 003	0.1127	0.0321	1.4000e- 003	0.0335	0.0000	417.9930	417.9930	0.0228	0.0000	418.5624
Worker	0.3753	0.2708	3.1696	0.0101	1.0840	8.4100e- 003	1.0924	0.2879	7.7400e- 003	0.2957	0.0000	909.3439	909.3439	0.0234	0.0000	909.9291
Total	0.4135	1.5218	3.5707	0.0144	1.1953	9.8700e- 003	1.2051	0.3200	9.1400e- 003	0.3292	0.0000	1,327.336 9	1,327.336 9	0.0462	0.0000	1,328.491 6

3.6 Paving - 2023 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	ľ				ton	is/yr							МП	⊺/yr		
Off-Road	6.7100e- 003	0.0663	0.0948	1.5000e- 004		3.3200e- 003	3.3200e- 003		3.0500e- 003	3.0500e- 003	0.0000	13.0175	13.0175	4.2100e- 003	0.0000	13.1227
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.7100e- 003	0.0663	0.0948	1.5000e- 004		3.3200e- 003	3.3200e- 003		3.0500e- 003	3.0500e- 003	0.0000	13.0175	13.0175	4.2100e- 003	0.0000	13.1227

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2023 Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.7000e- 004	2.7000e- 004	3.1200e- 003	1.0000e- 005	1.0700e- 003	1.0000e- 005	1.0800e- 003	2.8000e- 004	1.0000e- 005	2.9000e- 004	0.0000	0.8963	0.8963	2.0000e- 005	0.0000	0.8968
Total	3.7000e- 004	2.7000e- 004	3.1200e- 003	1.0000e- 005	1.0700e- 003	1.0000e- 005	1.0800e- 003	2.8000e- 004	1.0000e- 005	2.9000e- 004	0.0000	0.8963	0.8963	2.0000e- 005	0.0000	0.8968

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МП	∏/yr		
Off-Road	6.7100e- 003	0.0663	0.0948	1.5000e- 004		3.3200e- 003	3.3200e- 003		3.0500e- 003	3.0500e- 003	0.0000	13.0175	13.0175	4.2100e- 003	0.0000	13.1227
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.7100e- 003	0.0663	0.0948	1.5000e- 004		3.3200e- 003	3.3200e- 003		3.0500e- 003	3.0500e- 003	0.0000	13.0175	13.0175	4.2100e- 003	0.0000	13.1227

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2023 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.7000e- 004	2.7000e- 004	3.1200e- 003	1.0000e- 005	1.0700e- 003	1.0000e- 005	1.0800e- 003	2.8000e- 004	1.0000e- 005	2.9000e- 004	0.0000	0.8963	0.8963	2.0000e- 005	0.0000	0.8968
Total	3.7000e- 004	2.7000e- 004	3.1200e- 003	1.0000e- 005	1.0700e- 003	1.0000e- 005	1.0800e- 003	2.8000e- 004	1.0000e- 005	2.9000e- 004	0.0000	0.8963	0.8963	2.0000e- 005	0.0000	0.8968

3.6 Paving - 2024 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МП	⊺/yr		
Off-Road	0.0109	0.1048	0.1609	2.5000e- 004		5.1500e- 003	5.1500e- 003		4.7400e- 003	4.7400e- 003	0.0000	22.0292	22.0292	7.1200e- 003	0.0000	22.2073
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0109	0.1048	0.1609	2.5000e- 004		5.1500e- 003	5.1500e- 003		4.7400e- 003	4.7400e- 003	0.0000	22.0292	22.0292	7.1200e- 003	0.0000	22.2073

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2024 Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	5.9000e- 004	4.1000e- 004	4.9200e- 003	2.0000e- 005	1.8100e- 003	1.0000e- 005	1.8200e- 003	4.8000e- 004	1.0000e- 005	4.9000e- 004	0.0000	1.4697	1.4697	4.0000e- 005	0.0000	1.4706
Total	5.9000e- 004	4.1000e- 004	4.9200e- 003	2.0000e- 005	1.8100e- 003	1.0000e- 005	1.8200e- 003	4.8000e- 004	1.0000e- 005	4.9000e- 004	0.0000	1.4697	1.4697	4.0000e- 005	0.0000	1.4706

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МП	√yr		
Off-Road	0.0109	0.1048	0.1609	2.5000e- 004		5.1500e- 003	5.1500e- 003		4.7400e- 003	4.7400e- 003	0.0000	22.0292	22.0292	7.1200e- 003	0.0000	22.2073
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0109	0.1048	0.1609	2.5000e- 004		5.1500e- 003	5.1500e- 003		4.7400e- 003	4.7400e- 003	0.0000	22.0292	22.0292	7.1200e- 003	0.0000	22.2073

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2024 Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	5.9000e- 004	4.1000e- 004	4.9200e- 003	2.0000e- 005	1.8100e- 003	1.0000e- 005	1.8200e- 003	4.8000e- 004	1.0000e- 005	4.9000e- 004	0.0000	1.4697	1.4697	4.0000e- 005	0.0000	1.4706
Total	5.9000e- 004	4.1000e- 004	4.9200e- 003	2.0000e- 005	1.8100e- 003	1.0000e- 005	1.8200e- 003	4.8000e- 004	1.0000e- 005	4.9000e- 004	0.0000	1.4697	1.4697	4.0000e- 005	0.0000	1.4706

3.7 Architectural Coating - 2024 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Archit. Coating	4.1372					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	3.1600e- 003	0.0213	0.0317	5.0000e- 005		1.0700e- 003	1.0700e- 003		1.0700e- 003	1.0700e- 003	0.0000	4.4682	4.4682	2.5000e- 004	0.0000	4.4745
Total	4.1404	0.0213	0.0317	5.0000e- 005		1.0700e- 003	1.0700e- 003		1.0700e- 003	1.0700e- 003	0.0000	4.4682	4.4682	2.5000e- 004	0.0000	4.4745

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.7 Architectural Coating - 2024 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0101	6.9900e- 003	0.0835	2.8000e- 004	0.0307	2.3000e- 004	0.0309	8.1500e- 003	2.2000e- 004	8.3700e- 003	0.0000	24.9407	24.9407	6.1000e- 004	0.0000	24.9558
Total	0.0101	6.9900e- 003	0.0835	2.8000e- 004	0.0307	2.3000e- 004	0.0309	8.1500e- 003	2.2000e- 004	8.3700e- 003	0.0000	24.9407	24.9407	6.1000e- 004	0.0000	24.9558

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Archit. Coating	4.1372					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	3.1600e- 003	0.0213	0.0317	5.0000e- 005		1.0700e- 003	1.0700e- 003		1.0700e- 003	1.0700e- 003	0.0000	4.4682	4.4682	2.5000e- 004	0.0000	4.4745
Total	4.1404	0.0213	0.0317	5.0000e- 005		1.0700e- 003	1.0700e- 003		1.0700e- 003	1.0700e- 003	0.0000	4.4682	4.4682	2.5000e- 004	0.0000	4.4745

CalEEMod Version: CalEEMod.2016.3.2 Page 28 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.7 Architectural Coating - 2024 Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0101	6.9900e- 003	0.0835	2.8000e- 004	0.0307	2.3000e- 004	0.0309	8.1500e- 003	2.2000e- 004	8.3700e- 003	0.0000	24.9407	24.9407	6.1000e- 004	0.0000	24.9558
Total	0.0101	6.9900e- 003	0.0835	2.8000e- 004	0.0307	2.3000e- 004	0.0309	8.1500e- 003	2.2000e- 004	8.3700e- 003	0.0000	24.9407	24.9407	6.1000e- 004	0.0000	24.9558

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 29 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Mitigated	1.5857	7.9962	19.1834	0.0821	7.7979	0.0580	7.8559	2.0895	0.0539	2.1434	0.0000	7,620.498 6	7,620.498 6	0.3407	0.0000	7,629.016 2
Unmitigated	1.5857	7.9962	19.1834	0.0821	7.7979	0.0580	7.8559	2.0895	0.0539	2.1434	0.0000	7,620.498 6	7,620.498 6	0.3407	0.0000	7,629.016 2

4.2 Trip Summary Information

	Ave	rage Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	145.75	154.25	154.00	506,227	506,227
Apartments Mid Rise	4,026.75	3,773.25	4075.50	13,660,065	13,660,065
General Office Building	288.45	62.55	31.05	706,812	706,812
High Turnover (Sit Down Restaurant)	2,368.80	2,873.52	2817.72	3,413,937	3,413,937
Hotel	192.00	187.50	160.00	445,703	445,703
Quality Restaurant	501.12	511.92	461.20	707,488	707,488
Regional Shopping Center	528.08	601.44	357.84	1,112,221	1,112,221
Total	8,050.95	8,164.43	8,057.31	20,552,452	20,552,452

4.3 Trip Type Information

Page 30 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

	l.	Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	- 11	3
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
High Turnover (Sit Down	16.60	8.40	6.90	8.50	72.50	19.00	37	20	43
Hotel	16.60	8.40	6.90	19.40	61.60	19.00	58	38	4
Quality Restaurant	16.60	8.40	6.90	12.00	69.00	19.00	38	18	44
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Low Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Apartments Mid Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
General Office Building	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
High Turnover (Sit Down Restaurant)	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Hotel	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Quality Restaurant	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Regional Shopping Center	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

CalEEMod Version: CalEEMod.2016.3.2 Page 31 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0,0000	0.0000	2,512.646 5	2,512.646 5	0.1037	0.0215	2,521.635 6
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	2,512.646 5	2,512.646 5	0.1037	0.0215	2,521.635 6
NaturalGas Mitigated	0,1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	1,383.426 7	1,383.426 7	0.0265	0.0254	1,391.647 8
NaturalGas Unmitigated	0.1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	1,383.426 7	1,383.426 7	0.0265	0.0254	1,391.647 8

 CalEEMod Version: CalEEMod.2016.3.2
 Page 32 of 44
 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	ıs/yr							МТ	/yr		
Apartments Low Rise	408494	2.2000e- 003	0.0188	8.0100e- 003	1.2000e- 004		1.5200e- 003	1.5200e- 003		1.5200e- 003	1.5200e- 003	0.0000	21.7988	21.7988	4.2000e- 004	4.0000e- 004	21.9284
Apartments Mid Rise	1.30613e +007	0.0704	0.6018	0.2561	3.8400e- 003		0.0487	0.0487		0.0487	0.0487	0.0000	696.9989	696.9989	0.0134	0.0128	701.1408
General Office Building	468450	2.5300e- 003	0.0230	0.0193	1.4000e- 004		1.7500e- 003	1.7500e- 003		1.7500e- 003	1.7500e- 003	0.0000	24.9983	24.9983	4.8000e- 004	4.6000e- 004	25.1468
High Turnover (Sit Down Restaurant)		0.0448	0.4072	0.3421	2.4400e- 003		0.0310	0.0310		0.0310	0.0310	0.0000	443.3124	443.3124	8.5000e- 003	8.1300e- 003	445.9468
Hotel	1.74095e +006	9.3900e- 003	0.0853	0.0717	5.1000e- 004		6.4900e- 003	6.4900e- 003		6.4900e- 003	6.4900e- 003	0.0000	92.9036	92.9036	1.7800e- 003	1.7000e- 003	93.4557
Quality Restaurant	1.84608e +006	9.9500e- 003	0.0905	0.0760	5.4000e- 004		6.8800e- 003	6.8800e- 003		6.8800e- 003	6.8800e- 003	0.0000	98.5139	98.5139	1.8900e- 003	1.8100e- 003	99.0993
Regional Shopping Center		5.0000e- 004	4.5000e- 003	3.7800e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	4.9009	4.9009	9.0000e- 005	9.0000e- 005	4.9301
Total		0.1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	1,383.426 8	1,383.426 8	0.0265	0.0254	1,391.647 8

CalEEMod Version: CalEEMod.2016.3.2 Page 33 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	ıs/yr							МТ	T/yr		
Apartments Low Rise	408494	2.2000e- 003	0.0188	8.0100e- 003	1.2000e- 004		1.5200e- 003	1.5200e- 003		1.5200e- 003	1.5200e- 003	0.0000	21.7988	21.7988	4.2000e- 004	4.0000e- 004	21.9284
Apartments Mid Rise	1.30613e +007	0.0704	0.6018	0.2561	3.8400e- 003		0.0487	0.0487		0.0487	0.0487	0.0000	696.9989	696.9989	0.0134	0.0128	701.1408
General Office Building	468450	2.5300e- 003	0.0230	0.0193	1.4000e- 004		1.7500e- 003	1.7500e- 003		1.7500e- 003	1.7500e- 003	0.0000	24.9983	24.9983	4.8000e- 004	4.6000e- 004	25.1468
ligh Turnover (Sit Down Restaurant)		0.0448	0.4072	0.3421	2.4400e- 003		0.0310	0.0310		0.0310	0.0310	0.0000	443.3124	443.3124	8.5000e- 003	8.1300e- 003	445.9468
Hotel	1.74095e +006	9.3900e- 003	0.0853	0.0717	5.1000e- 004		6.4900e- 003	6.4900e- 003		6.4900e- 003	6.4900e- 003	0.0000	92.9036	92.9036	1.7800e- 003	1.7000e- 003	93.4557
Quality Restaurant	1.84608e +006	9.9500e- 003	0.0905	0.0760	5.4000e- 004		6.8800e- 003	6.8800e- 003		6.8800e- 003	6.8800e- 003	0.0000	98.5139	98.5139	1.8900e- 003	1.8100e- 003	99.0993
Regional Shopping Center	91840	5.0000e- 004	4.5000e- 003	3.7800e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	4.9009	4.9009	9.0000e- 005	9.0000e- 005	4.9301
Total		0.1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	1,383.426 8	1,383.426 8	0.0265	0.0254	1,391.647 8

CalEEMod Version: CalEEMod.2016.3.2 Page 34 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	∏/yr	to.
Apartments Low Rise	106010	33.7770	1.3900e- 003	2.9000e- 004	33.8978
Apartments Mid Rise	3.94697e +006	1,257.587 9	0.0519	0.0107	1,262.086 9
General Office Building	584550	186.2502	7.6900e- 003	1.5900e- 003	186.9165
ligh Turnover (Sit Down Restaurant)		506.3022	0.0209	4.3200e- 003	508.1135
Hotel	550308	175.3399	7.2400e- 003	1.5000e- 003	175.9672
Quality Restaurant	353120	112.5116	4.6500e- 003	9.6000e- 004	112.9141
Regional Shopping Center	756000	240.8778	9.9400e- 003	2.0600e- 003	241.7395
Total		2,512.646 5	0.1037	0.0215	2,521.635 6

CalEEMod Version: CalEEMod.2016.3.2 Page 35 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

5.3 Energy by Land Use - Electricity Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M.	∏/yr	
Apartments Low Rise	106010	33.7770	1.3900e- 003	2.9000e- 004	33.8978
Apartments Mid Rise	3.94697e +006	1,257.587 9	0.0519	0.0107	1,262.086 9
General Office Building	584550	186.2502	7.6900e- 003	1.5900e- 003	186.9165
High Turnover (Sit Down Restaurant)		506.3022	0.0209	4.3200e- 003	508.1135
Hotel	550308	175.3399	7.2400e- 003	1.5000e- 003	175.9672
Quality Restaurant	353120	112.5116	4.6500e- 003	9.6000e- 004	112.9141
Regional Shopping Center	756000	240.8778	9.9400e- 003	2.0600e- 003	241.7395
Total		2,512.646 5	0.1037	0.0215	2,521.635 6

6.0 Area Detail

6.1 Mitigation Measures Area

Page 36 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	5.1437	0.2950	10.3804	1.6700e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222,5835
Unmitigated	5.1437	0.2950	10.3804	1.6700e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.5835

6.2 Area by SubCategory Unmitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МП	/yr		
Coating	0.4137					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4.3998					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	0.0206	0.1763	0.0750	1.1200e- 003		0.0143	0.0143		0.0143	0.0143	0.0000	204.1166	204.1166	3.9100e- 003	3.7400e- 003	205.3295
Landscaping	0.3096	0.1187	10.3054	5.4000e- 004		0.0572	0.0572		0.0572	0.0572	0.0000	16.8504	16.8504	0.0161	0.0000	17.2540
Total	5.1437	0.2950	10.3804	1.6600e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.5835

CalEEMod Version: CalEEMod.2016.3.2 Page 37 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

6.2 Area by SubCategory Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МП	/yr		
Architectural Coating	0.4137					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	4.3998					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	0.0206	0.1763	0.0750	1.1200e- 003		0.0143	0.0143		0.0143	0.0143	0.0000	204.1166	204.1166	3.9100e- 003	3.7400e- 003	205.329
Landscaping	0.3096	0.1187	10.3054	5.4000e- 004		0.0572	0.0572		0.0572	0.0572	0.0000	16.8504	16.8504	0.0161	0.0000	17.2540
Total	5.1437	0.2950	10.3804	1.6600e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.5835

7.0 Water Detail

^{7.1} Mitigation Measures Water

CalEEMod Version: CalEEMod.2016.3.2 Page 38 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

	Total CO2	CH4	N2O	CO2e
Category		MT	Г/уг	
Mitigated	585.8052	3.0183	0.0755	683.7567
Unmitigated	585.8052	3.0183	0.0755	683.7567

CalEEMod Version: CalEEMod.2016.3.2 Page 39 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

7.2 Water by Land Use Unmitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		М	T/yr	
Apartments Low Rise	1.62885 / 1.02688	10.9095	0.0535	1.3400e- 003	12.6471
Apartments Mid Rise	63.5252 / 40.0485	425.4719	2.0867	0.0523	493.2363
General Office Building	7.99802 / 4.90201	53.0719	0.2627	6.5900e- 003	61.6019
High Turnover (Sit Down Restaurant)			0.3580	8.8200e- 003	62.8482
Hotel	1.26834 / 0.140927	6.1633	0.0416	1.0300e- 003	7.5079
Quality Restaurant	2.42827 / 0.154996	11.3934	0.0796	1.9600e- 003	13.9663
Regional Shopping Center	4.14806 / 2.54236	27.5250	0.1363	3.4200e- 003	31.9490
Total		585.8052	3.0183	0.0755	683.7567

CalEEMod Version: CalEEMod.2016.3.2 Page 40 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

7.2 Water by Land Use Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		М	T/yr	
Apartments Low Rise	1.62885 / 1.02688	10.9095	0.0535	1.3400e- 003	12.6471
Apartments Mid Rise	63.5252 / 40.0485	425.4719	2.0867	0.0523	493.2363
General Office Building	7.99802 / 4.90201	53.0719	0.2627	6.5900e- 003	61.6019
High Turnover (Sit Down Restaurant)			0.3580	8.8200e- 003	62.8482
Hotel	1.26834 / 0.140927	6.1633	0.0416	1.0300e- 003	7.5079
Quality Restaurant	2.42827 / 0.154996	11.3934	0.0796	1.9600e- 003	13.9663
Regional Shopping Center	4.14806 / 2.54236	27.5250	0.1363	3.4200e- 003	31.9490
Total		585.8052	3.0183	0.0755	683.7567

8.0 Waste Detail

8.1 Mitigation Measures Waste

CalEEMod Version: CalEEMod.2016.3.2 Page 41 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Category/Year

	Total CO2	CH4	N2O	CO2e
		МТ	/уг	
Mitigated	207.8079	12.2811	0.0000	514.8354
Unmitigated	207.8079	12.2811	0.0000	514.8354

CalEEMod Version: CalEEMod.2016.3.2 Page 42 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

8.2 Waste by Land Use Unmitigated

		CH4	N2O	CO2e
tons		МТ	/yr	
11.5	2.3344	0.1380	0.0000	5.7834
448.5	91.0415	5.3804	0.0000	225.5513
41.85	8.4952	0.5021	0.0000	21.0464
428.4	86.9613	5.1393	0.0000	215.4430
27.38	5.5579	0.3285	0.0000	13.7694
7.3	1.4818	0.0876	0.0000	3.6712
58.8	11.9359	0.7054	0.0000	29.5706
	207.8079	12.2811	0.0000	514.8354
	11.5 448.5 41.85 428.4 27.38	11.5 2.3344 448.5 91.0415 41.85 8.4952 428.4 86.9613 27.38 5.5579 7.3 1.4818 58.8 11.9359	11.5 2.3344 0.1380 448.5 91.0415 5.3804 41.85 8.4952 0.5021 428.4 86.9613 5.1393 27.38 5.5579 0.3285 7.3 1.4618 0.0876 58.8 11.9359 0.7054	11.5 2.3344 0.1380 0.0000 448.5 91.0415 5.3804 0.0000 41.85 8.4952 0.5021 0.0000 428.4 86.9613 5.1393 0.0000 27.38 5.5579 0.3285 0.0000 7.3 1.4818 0.0876 0.0000 58.8 11.9359 0.7054 0.0000

Page 43 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

8.2 Waste by Land Use Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МП	/yr	
Apartments Low Rise	11.5	2.3344	0.1380	0.0000	5.7834
Apartments Mid Rise	448.5	91.0415	5.3804	0.0000	225.5513
General Office Building	41.85	8.4952	0.5021	0.0000	21.0464
High Turnover (Sit Down Restaurant)	428.4	86.9613	5.1393	0.0000	215.4430
Hotel	27.38	5.5579	0.3285	0.0000	13.7694
Quality Restaurant	7.3	1.4818	0.0876	0.0000	3.6712
Regional Shopping Center	58.8	11.9359	0.7054	0.0000	29.5706
Total		207.8079	12.2811	0.0000	514.8354

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

CalEEMod Version: CalEEMod.2016.3.2 Page 44 of 44 Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Boilers

Equipment Type Number Heat Input/Day Heat Input/Year Boiler Rating Fuel Type

User Defined Equipment

Equipment Type Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Village South Specific Plan (Proposed) Los Angeles-South Coast County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	45.00	1000sqft	1.03	45,000.00	0
High Turnover (Sit Down Restaurant)	36.00	1000sqft	0.83	36,000.00	0
Hotel	50.00	Room	1.67	72,600.00	0
Quality Restaurant	8.00	1000sqft	0.18	8,000.00	0
Apartments Low Rise	25.00	Dwelling Unit	1.56	25,000.00	72
Apartments Mid Rise	975.00	Dwelling Unit	25.66	975,000.00	2789
Regional Shopping Center	56.00	1000sqft	1.29	56,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	9			Operational Year	2028
Utility Company	Southern California Edison	į.			
CO2 Intensity (lb/MWhr)	702.44	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (Ib/MWhr)	.006

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

 $\label{lem:construction} \textbf{Construction Phase - See SWAPE comment regarding individual construction phase lengths.}$

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use -

 $Construction\ Off-road\ Equipment\ Mitigation\ -\ See\ SWAPE\ comment\ on\ construction-related\ mitigation.$

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

Table Name	Column Name	Default Value	New Value
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	NumberWood	1.25	0.00
tblFireplaces	NumberWood	48.75	0.00
tblVehicleTrips	ST_TR	7.16	6.17
tblVehicleTrips	ST_TR	6.39	3.87
tblVehicleTrips	ST_TR	2.46	1.39
tblVehicleTrips	ST_TR	158.37	79.82
tblVehicleTrips	ST_TR	8.19	3.75
tblVehicleTrips	ST_TR	94.36	63.99
tblVehicleTrips	ST_TR	49.97	10.74
tblVehicleTrips	SU_TR	6.07	6.16
tblVehicleTrips	SU_TR	5.86	4.18
tblVehicleTrips	SU_TR	1.05	0.69
tblVehicleTrips	SU_TR	131.84	78.27

CalEEMod Version: CalEEMod.2016.3.2 Page 3 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

tblVehicleTrips	SU_TR	5.95	3.20
tblVehicleTrips	SU_TR	72.16	57.65
tblVehicleTrips	SU_TR	25.24	6.39
tblVehicleTrips	WD_TR	6.59	5.83
tblVehicleTrips	WD_TR	6.65	4.13
tblVehicleTrips	WD_TR	11.03	6.41
tblVehicleTrips	WD_TR	127.15	65.80
tblVehicleTrips	WD_TR	8.17	3.84
tblVehicleTrips	WD_TR	89.95	62.64
tblVehicleTrips	WD_TR	42.70	9.43
tblWoodstoves	NumberCatalytic	1.25	0.00
tblWoodstoves	NumberCatalytic	48.75	0.00
tblWoodstoves	NumberNoncatalytic	1.25	0.00
tblWoodstoves	NumberNoncatalytic	48.75	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00
	- B		· III BUS

2.0 Emissions Summary

 CalEEMod Version: CalEEMod.2016.3.2
 Page 4 of 35
 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

2.1 Overall Construction (Maximum Daily Emission) <u>Unmitigated Construction</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	day	·						lb/d	lay		
2021	4.2769	46.4588	31.6840	0.0643	18.2675	2.0461	20.3135	9.9840	1.8824	11.8664	0.0000	6,234.797 4	6,234.797 4	1.9495	0.0000	6,283.535
2022	5.3304	38.8967	49.5629	0.1517	9.8688	1.6366	10.7727	3.6558	1.5057	5.1615	0.0000	15,251.56 74	15,251.56 74	1.9503	0.0000	15,278.5 88
2023	4.8957	26.3317	46.7567	0.1472	9.8688	0.7794	10.6482	2.6381	0.7322	3.3702	0.0000	14,807.52 69	14,807.52 69	1.0250	0.0000	14,833.1 21
2024	237.1630	9.5575	15.1043	0.0244	1.7884	0.4698	1.8628	0.4743	0.4322	0.5476	0.0000	2,361.398 9	2,361.398 9	0.7177	0.0000	2,379.342 1
Maximum	237.1630	46.4588	49.5629	0.1517	18.2675	2.0461	20.3135	9.9840	1.8824	11.8664	0.0000	15,251.56 74	15,251.56 74	1.9503	0.0000	15,278.52 88

 CalEEMod Version: CalEEMod.2016.3.2
 Page 5 of 35
 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

2.1 Overall Construction (Maximum Daily Emission) Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb.	/day				•			lb/s	day		
2021	4.2769	46.4588	31.6840	0.0643	18.2675	2.0461	20.3135	9.9840	1.8824	11.8664	0.0000	6,234.797 4	6,234.797 4	1.9495	0.0000	6,283.53
2022	5.3304	38.8967	49.5629	0.1517	9.8688	1.6366	10.7727	3.6558	1.5057	5.1615	0.0000	15,251.56 74	15,251.56 74	1.9503	0.0000	15,278.5 88
2023	4.8957	26.3317	46.7567	0.1472	9.8688	0.7794	10.6482	2.6381	0.7322	3.3702	0.0000	14,807.52 69	14,807.52 69	1.0250	0.0000	14,833.1 20
2024	237.1630	9.5575	15.1043	0.0244	1.7884	0.4698	1.8628	0.4743	0.4322	0.5476	0.0000	2,361.398 9	2,361.398 9	0.7177	0.0000	2,379.34 1
Maximum	237.1630	46.4588	49.5629	0.1517	18.2675	2.0461	20.3135	9.9840	1.8824	11.8664	0.0000	15,251.56 74	15,251.56 74	1.9503	0.0000	15,278.5 88
·	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

 CalEEMod Version: CalEEMod.2016.3.2
 Page 6 of 35
 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay	•	
Area	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92
Energy	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7
Mobile	9.8489	45.4304	114.8495	0.4917	45.9592	0.3360	46.2951	12.2950	0.3119	12.6070		50,306.60 34	50,306.60 34	2.1807		50,361.12 08
Total	41.1168	67.2262	207.5497	0.6278	45.9592	2.4626	48.4217	12.2950	2.4385	14.7336	0.0000	76,811.18 16	76,811.18 16	2.8282	0.4832	77,025.87 86

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			<u> </u>		lb/i	day							lb/d	lay		
Area	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.1 92
Energy	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292	İ	8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.63 7
Mobile	9.8489	45.4304	114.8495	0.4917	45.9592	0.3360	46.2951	12.2950	0.3119	12.6070	!	50,306.60 34	50,306.60 34	2.1807		50,361.1 08
Total	41.1168	67.2262	207.5497	0.6278	45.9592	2.4626	48.4217	12.2950	2.4385	14.7336	0.0000	76,811.18 16	76,811.18 16	2.8282	0.4832	77,025.8 86

Page 7 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	9/1/2021	10/12/2021	5	30	
2	Site Preparation	Site Preparation	10/13/2021	11/9/2021	5	20	
3	Grading	Grading	11/10/2021	1/11/2022	5	45	
4	Building Construction	Building Construction	1/12/2022	12/12/2023	5	500	
5	Paving	Paving	12/13/2023	1/30/2024	5	35	
6	Architectural Coating	Architectural Coating	1/31/2024	3/19/2024	5	35	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Page 8 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Excavators	3	8.00	158	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Page 9 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	0.00	458.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	7	18.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	801.00	143.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	160.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2021

Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Fugitive Dust					3.3074	0.0000	3.3074	0.5008	0.0000	0.5008			0.0000			0.0000
Off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411	İ	3,747.944 9	3,747.944 9	1.0549		3,774.317 4
Total	3.1651	31.4407	21.5650	0.0388	3.3074	1.5513	4.8588	0.5008	1.4411	1.9419		3,747.944 9	3,747.944 9	1.0549		3,774.317 4

CalEEMod Version: CalEEMod.2016.3.2 Page 10 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.2 Demolition - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e				
Category	gory Ib/day											lb/day								
Hauling	0.1273	4.0952	0.9602	0.0119	0.2669	0.0126	0.2795	0.0732	0.0120	0.0852		1,292.241 3	1,292.241 3	0.0877		1,294.433 7				
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000				
Worker	0.0643	0.0442	0.6042	1.7100e- 003	0.1677	1.3500e- 003	0.1690	0.0445	1.2500e- 003	0.0457		170.8155	170.8155	5.0300e- 003		170.9413				
Total	0.1916	4.1394	1.5644	0.0136	0.4346	0.0139	0.4485	0.1176	0.0133	0.1309		1,463.056 8	1,463.056 8	0.0927		1,465.375				

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					3.3074	0.0000	3.3074	0.5008	0.0000	0.5008			0.0000			0.0000
Off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411	0.0000	3,747.944 9	3,747.944 9	1.0549		3,774.317 4
Total	3.1651	31.4407	21.5650	0.0388	3.3074	1.5513	4.8588	0.5008	1.4411	1.9419	0.0000	3,747.944 9	3,747.944 9	1.0549		3,774.317 4

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.2 Demolition - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.1273	4.0952	0.9602	0.0119	0.2669	0.0126	0.2795	0.0732	0.0120	0.0852		1,292.241 3	1,292.241 3	0.0877		1,294.433 7
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0643	0.0442	0.6042	1.7100e- 003	0.1677	1.3500e- 003	0.1690	0.0445	1.2500e- 003	0.0457		170.8155	170.8155	5.0300e- 003		170.9413
Total	0.1916	4.1394	1.5644	0.0136	0.4346	0.0139	0.4485	0.1176	0.0133	0.1309		1,463.056 8	1,463.056 8	0.0927		1,465.375 0

3.3 Site Preparation - 2021 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust					18.0663	0.0000	18.0663	9.9307	0.0000	9.9307			0.0000			0.0000
Off-Road	3.8882	40.4971	21.1543	0.0380		2.0445	2.0445		1.8809	1.8809		3,685.656 9	3,685.656 9	1.1920		3,715.457 3
Total	3.8882	40.4971	21.1543	0.0380	18.0663	2.0445	20.1107	9.9307	1.8809	11.8116		3,685.656 9	3,685.656 9	1.1920		3,715.457 3

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.3 Site Preparation - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0772	0.0530	0.7250	2.0600e- 003	0.2012	1.6300e- 003	0.2028	0.0534	1.5000e- 003	0.0549		204.9786	204.9786	6.0400e- 003		205.1296
Total	0.0772	0.0530	0.7250	2.0600e- 003	0.2012	1.6300e- 003	0.2028	0.0534	1.5000e- 003	0.0549		204.9786	204.9786	6.0400e- 003		205.1296

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					18.0663	0.0000	18.0663	9.9307	0.0000	9.9307		į	0.0000			0.0000
Off-Road	3.8882	40.4971	21.1543	0.0380		2.0445	2.0445		1.8809	1.8809	0.0000	3,685.656 9	3,685.656 9	1.1920		3,715.457 3
Total	3.8882	40.4971	21.1543	0.0380	18.0663	2.0445	20.1107	9.9307	1.8809	11.8116	0.0000	3,685.656 9	3,685.656 9	1.1920		3,715.457 3

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.3 Site Preparation - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			•		lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	l	0.0000	0.0000	0.0000		0.0000
Worker	0.0772	0.0530	0.7250	2.0600e- 003	0.2012	1.6300e- 003	0.2028	0.0534	1.5000e- 003	0.0549	l	204.9786	204.9786	6.0400e- 003		205.1296
Total	0.0772	0.0530	0.7250	2.0600e- 003	0.2012	1.6300e- 003	0.2028	0.0534	1.5000e- 003	0.0549		204.9786	204.9786	6.0400e- 003		205.1296

3.4 Grading - 2021 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	4.1912	46.3998	30.8785	0.0620		1.9853	1.9853		1.8265	1.8265		6,007.043 4	6,007.043 4	1.9428		6,055.613 4
Total	4.1912	46.3998	30.8785	0.0620	8.6733	1.9853	10.6587	3.5965	1.8265	5.4230		6,007.043 4	6,007.043 4	1.9428		6,055.613 4

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0857	0.0589	0.8056	2.2900e- 003	0.2236	1.8100e- 003	0.2254	0.0593	1.6600e- 003	0.0610		227.7540	227.7540	6.7100e- 003		227.9217
Total	0.0857	0.0589	0.8056	2.2900e- 003	0.2236	1.8100e- 003	0.2254	0.0593	1.6600e- 003	0.0610		227.7540	227.7540	6.7100e- 003		227.9217

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	4.1912	46.3998	30.8785	0.0620		1.9853	1.9853		1.8265	1.8265	0.0000	6,007.043 4	6,007.043 4	1.9428		6,055.613 4
Total	4.1912	46.3998	30.8785	0.0620	8.6733	1.9853	10.6587	3.5965	1.8265	5.4230	0.0000	6,007.043 4	6,007.043 4	1.9428		6,055.613 4

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			•	•	lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	l	0.0000	0.0000	0.0000		0.0000
Worker	0.0857	0.0589	0.8056	2.2900e- 003	0.2236	1.8100e- 003	0.2254	0.0593	1.6600e- 003	0.0610	l	227.7540	227.7540	6.7100e- 003		227.9217
Total	0.0857	0.0589	0.8056	2.2900e- 003	0.2236	1.8100e- 003	0.2254	0.0593	1.6600e- 003	0.0610		227.7540	227.7540	6.7100e- 003		227.9217

3.4 Grading - 2022 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	3.6248	38.8435	29.0415	0.0621		1.6349	1.6349		1.5041	1.5041		6,011.410 5	6,011.410 5	1.9442		6,060.015 8
Total	3.6248	38.8435	29.0415	0.0621	8.6733	1.6349	10.3082	3.5965	1.5041	5.1006		6,011.410 5	6,011.410 5	1.9442		6,060.015 8

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2022 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0803	0.0532	0.7432	2.2100e- 003	0.2236	1.7500e- 003	0.2253	0.0593	1.6100e- 003	0.0609		219.7425	219.7425	6.0600e- 003		219.8941
Total	0.0803	0.0532	0.7432	2.2100e- 003	0.2236	1.7500e- 003	0.2253	0.0593	1.6100e- 003	0.0609		219.7425	219.7425	6.0600e- 003		219.8941

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	3.6248	38.8435	29.0415	0.0621		1.6349	1.6349		1.5041	1.5041	0.0000	6,011.410 5	6,011.410 5	1.9442		6,060.015 8
Total	3.6248	38.8435	29.0415	0.0621	8.6733	1.6349	10.3082	3.5965	1.5041	5.1006	0.0000	6,011.410 5	6,011.410 5	1.9442		6,060.015 8

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2022 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0803	0.0532	0.7432	2.2100e- 003	0.2236	1.7500e- 003	0.2253	0.0593	1.6100e- 003	0.0609		219.7425	219.7425	6.0600e- 003		219.8941
Total	0.0803	0.0532	0.7432	2.2100e- 003	0.2236	1.7500e- 003	0.2253	0.0593	1.6100e- 003	0.0609		219.7425	219.7425	6.0600e- 003		219.8941

3.5 Building Construction - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		2,554.333 6	2,554.333 6	0.6120		2,569.632 2
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		2,554.333 6	2,554.333 6	0.6120		2,569.632 2

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2022 Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/e	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.4079	13.2032	3.4341	0.0364	0.9155	0.0248	0.9404	0.2636	0.0237	0.2873		3,896.548 2	3,896.548 2	0.2236		3,902.138 4
Worker	3.2162	2.1318	29.7654	0.0883	8.9533	0.0701	9.0234	2.3745	0.0646	2.4390		8,800.685 7	8,800.685 7	0.2429		8,806.758 2
Total	3.6242	15.3350	33.1995	0.1247	9.8688	0.0949	9.9637	2.6381	0.0883	2.7263		12,697.23 39	12,697.23 39	0.4665		12,708.89 66

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	2,554.333 6	2,554.333 6	0.6120		2,569.632 2
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	2,554.333 6	2,554.333 6	0.6120		2,569.632

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2022 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.4079	13.2032	3.4341	0.0364	0.9155	0.0248	0.9404	0.2636	0.0237	0.2873		3,896.548 2	3,896.548 2	0.2236		3,902.138 4
Worker	3.2162	2.1318	29.7654	0.0883	8.9533	0.0701	9.0234	2.3745	0.0646	2.4390		8,800.685 7	8,800.685 7	0.2429		8,806.758 2
Total	3.6242	15.3350	33.1995	0.1247	9.8688	0.0949	9.9637	2.6381	0.0883	2.7263		12,697.23 39	12,697.23 39	0.4665		12,708.89 66

3.5 Building Construction - 2023 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2023 Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	:	0.0000
Vendor	0.3027	10.0181	3.1014	0.0352	0.9156	0.0116	0.9271	0.2636	0.0111	0.2747	ļ	3,773.876 2	3,773.876 2	0.1982		3,778.830 0
Worker	3.0203	1.9287	27.4113	0.0851	8.9533	0.0681	9.0214	2.3745	0.0627	2.4372	l	8,478.440 8	8,478.440 8	0.2190		8,483.916 0
Total	3.3229	11.9468	30.5127	0.1203	9.8688	0.0797	9.9485	2.6381	0.0738	2.7118		12,252.31 70	12,252.31 70	0.4172		12,262.74 60

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2023 Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.3027	10.0181	3.1014	0.0352	0.9156	0.0116	0.9271	0.2636	0.0111	0.2747		3,773.876 2	3,773.876 2	0.1982		3,778.830 0
Worker	3.0203	1.9287	27.4113	0.0851	8.9533	0.0681	9.0214	2.3745	0.0627	2.4372		8,478.440 8	8,478.440 8	0.2190		8,483.916 0
Total	3.3229	11.9468	30.5127	0.1203	9.8688	0.0797	9.9485	2.6381	0.0738	2.7118		12,252.31 70	12,252.31 70	0.4172		12,262.74 60

3.6 Paving - 2023 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694		2,207.584 1	2,207.584 1	0.7140		2,225.433
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	İ		0.0000			0.0000
Total	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102	İ	0.4694	0.4694	İ	2,207.584 1	2,207.584 1	0.7140		2,225.433

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2023 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			•	•	lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	l	0.0000	0.0000	0.0000		0.0000
Worker	0.0566	0.0361	0.5133	1.5900e- 003	0.1677	1.2800e- 003	0.1689	0.0445	1.1700e- 003	0.0456	l	158.7723	158.7723	4.1000e- 003		158.8748
Total	0.0566	0.0361	0.5133	1.5900e- 003	0.1677	1.2800e- 003	0.1689	0.0445	1.1700e- 003	0.0456		158.7723	158.7723	4.1000e- 003		158.8748

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	!	 	0.0000			0.0000
Total	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2023 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			•	•	lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	l	0.0000	0.0000	0.0000		0.0000
Worker	0.0566	0.0361	0.5133	1.5900e- 003	0.1677	1.2800e- 003	0.1689	0.0445	1.1700e- 003	0.0456	l	158.7723	158.7723	4.1000e- 003		158.8748
Total	0.0566	0.0361	0.5133	1.5900e- 003	0.1677	1.2800e- 003	0.1689	0.0445	1.1700e- 003	0.0456		158.7723	158.7723	4.1000e- 003		158.8748

3.6 Paving - 2024 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310		2,207.547 2	2,207.547 2	0.7140		2,225.396
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	İ		0.0000			0.0000
Total	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685	İ	0.4310	0.4310	İ	2,207.547 2	2,207.547	0.7140		2,225.396

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2024 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			•		lb/	day							lb/c	lay		•
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0535	0.0329	0.4785	1.5400e- 003	0.1677	1.2600e- 003	0.1689	0.0445	1.1600e- 003	0.0456	1	153.8517	153.8517	3.7600e- 003		153.9458
Total	0.0535	0.0329	0.4785	1.5400e- 003	0.1677	1.2600e- 003	0.1689	0.0445	1.1600e- 003	0.0456		153.8517	153.8517	3.7600e- 003		153.9458

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396 3
Paving	0.0000					0.0000	0.0000		0.0000	0.0000		 	0.0000			0.0000
Total	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396 3

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2024 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0535	0.0329	0.4785	1.5400e- 003	0.1677	1.2600e- 003	0.1689	0.0445	1.1600e- 003	0.0456		153.8517	153.8517	3.7600e- 003		153.9458
Total	0.0535	0.0329	0.4785	1.5400e- 003	0.1677	1.2600e- 003	0.1689	0.0445	1.1600e- 003	0.0456		153.8517	153.8517	3.7600e- 003		153.9458

3.7 Architectural Coating - 2024 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Archit. Coating	236.4115					0.0000	0.0000		0.0000	0.0000		į	0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	ļ	281.4481	281.4481	0.0159		281.8443
Total	236.5923	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443

Date: 1/6/2021 1:54 PM

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.7 Architectural Coating - 2024 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			•		lb/	day							lb/c	lay		•
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	0.0000	0.0000	0.0000		0.0000
Worker	0.5707	0.3513	5.1044	0.0165	1.7884	0.0134	1.8018	0.4743	0.0123	0.4866	1	1,641.085 2	1,641.085 2	0.0401		1,642.088 6
Total	0.5707	0.3513	5.1044	0.0165	1.7884	0.0134	1.8018	0.4743	0.0123	0.4866		1,641.085 2	1,641.085 2	0.0401		1,642.088 6

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Archit. Coating	236.4115					0.0000	0.0000		0.0000	0.0000		į	0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443
Total	236.5923	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.7 Architectural Coating - 2024 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	:	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	l	0.0000	0.0000	0.0000		0.0000
Worker	0.5707	0.3513	5.1044	0.0165	1.7884	0.0134	1.8018	0.4743	0.0123	0.4866	l	1,641.085 2	1,641.085 2	0.0401		1,642.088 6
Total	0.5707	0.3513	5.1044	0.0165	1.7884	0.0134	1.8018	0.4743	0.0123	0.4866		1,641.085 2	1,641.085 2	0.0401		1,642.088 6

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Date: 1/6/2021 1:54 PM

CalEEMod Version: CalEEMod.2016.3.2 Page 28 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/i	day							lb/c	iay		
Mitigated	9.8489	45.4304	114.8495	0.4917	45.9592	0.3360	46.2951	12.2950	0.3119	12.6070		50,306.60 34	50,306.60 34	2.1807		50,361.12 08
Unmitigated	9.8489	45.4304	114.8495	0.4917	45.9592	0.3360	46.2951	12.2950	0.3119	12.6070		50,306.60 34	50,306.60 34	2.1807		50,361.12 08

4.2 Trip Summary Information

	Ave	erage Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	145.75	154.25	154.00	506,227	506,227
Apartments Mid Rise	4,026.75	3,773.25	4075.50	13,660,065	13,660,065
General Office Building	288.45	62.55	31.05	706,812	706,812
High Turnover (Sit Down Restaurant)	2,368.80	2,873.52	2817.72	3,413,937	3,413,937
Hotel	192.00	187.50	160.00	445,703	445,703
Quality Restaurant	501.12	511.92	461.20	707,488	707,488
Regional Shopping Center	528.08	601.44	357.84	1,112,221	1,112,221
Total	8,050.95	8,164.43	8,057.31	20,552,452	20,552,452

4.3 Trip Type Information

Page 29 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

		Miles			Trip %			Trip Purpos	se %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
High Turnover (Sit Down	16.60	8.40	6.90	8.50	72.50	19.00	37	20	43
Hotel	16.60	8.40	6.90	19.40	61.60	19.00	58	38	4
Quality Restaurant	16.60	8.40	6.90	12.00	69.00	19.00	38	18	44
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Low Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Apartments Mid Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
General Office Building	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
High Turnover (Sit Down Restaurant)	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Hotel	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Quality Restaurant	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Regional Shopping Center	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.00082

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Page 30 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/i	day							lb/c	lay		
NaturalGas Mitigated	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7
NaturalGas Unmitigated	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7

CalEEMod Version: CalEEMod.2016.3.2 Page 31 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	lay		
Apartments Low Rise	1119.16	0.0121	0.1031	0.0439	6.6000e- 004		8.3400e- 003	8.3400e- 003		8.3400e- 003	8.3400e- 003		131.6662	131.6662	2.5200e- 003	2.4100e- 003	132.4486
Apartments Mid Rise	35784.3	0.3859	3.2978	1.4033	0.0211		0.2666	0.2666		0.2666	0.2666		4,209.916 4	4,209.916 4	0.0807	0.0772	4,234.933 9
General Office Building	1283.42	0.0138	0.1258	0.1057	7.5000e- 004		9.5600e- 003	9.5600e- 003		9.5600e- 003	9.5600e- 003		150.9911	150.9911	2.8900e- 003	2.7700e- 003	151.8884
High Turnover (Sit Down Restaurant)		0.2455	2.2314	1.8743	0.0134		0.1696	0.1696		0.1696	0.1696		2,677.634 2	2,677.634 2	0.0513	0.0491	2,693.546 0
Hotel	4769.72	0.0514	0.4676	0.3928	2.8100e- 003		0.0355	0.0355		0.0355	0.0355		561.1436	561.1436	0.0108	0.0103	564.4782
Quality Restaurant	5057.75	0.0545	0.4959	0.4165	2.9800e- 003		0.0377	0.0377		0.0377	0.0377		595.0298	595.0298	0.0114	0.0109	598.5658
Regional Shopping Center		2.7100e- 003	0.0247	0.0207	1.5000e- 004		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003		29.6019	29.6019	5.7000e- 004	5.4000e- 004	29.7778
Total		0.7660	6.7463	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7

CalEEMod Version: CalEEMod.2016.3.2 Page 32 of 35 Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

5.2 Energy by Land Use - NaturalGas Mitigated

NaturalGa s Use	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
kBTU/yr					lb/	day							lb/c	lay	•	
1.11916	0.0121	0.1031	0.0439	6.6000e- 004		8.3400e- 003	8.3400e- 003		8.3400e- 003	8.3400e- 003		131.6662	131.6662	2.5200e- 003	2.4100e- 003	132.4486
35.7843	0.3859	3.2978	1.4033	0.0211		0.2666	0.2666		0.2666	0.2666		4,209.916 4	4,209.916 4	0.0807	0.0772	4,234.933 9
1.28342	0.0138	0.1258	0.1057	7.5000e- 004		9.5600e- 003	9.5600e- 003		9.5600e- 003	9.5600e- 003		150.9911	150.9911	2.8900e- 003	2.7700e- 003	151.8884
22.7599	0.2455	2.2314	1.8743	0.0134		0.1696	0.1696		0.1696	0.1696		2,677.634 2	2,677.634 2	0.0513	0.0491	2,693.546 0
4.76972	0.0514	0.4676	0.3928	2.8100e- 003		0.0355	0.0355		0.0355	0.0355		561.1436	561.1436	0.0108	0.0103	564.4782
5.05775	0.0545	0.4959	0.4165	2.9800e- 003		0.0377	0.0377		0.0377	0.0377		595.0298	595.0298	0.0114	0.0109	598.5658
0.251616	2.7100e- 003	0.0247	0.0207	1.5000e- 004		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003		29.6019	29.6019	5.7000e- 004	5.4000e- 004	29.7778
	0.7660	6.7463	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7
	s Use kBTU/yr 1.11916 3 35.7843 1.28342 22.7599 4.76972 5.05775 0.251616	s Use KBTUlyr 1.11916 0.0121 35.7843 0.3859 1.28342 0.0138 22.7599 0.2455 4.76972 0.0514 5.05775 0.0545 0.251616 2.7100e-003	s Use RBTUlyr 1.11916 0.0121 0.1031 35.7843 0.3859 3.2978 1.28342 0.0138 0.1258 22.7599 0.2455 2.2314 4.76972 0.0514 0.4676 5.05775 0.0545 0.4959 0.251616 2.7100e-003 0.0247 003 0.0247 0.0347	s Use RBTUlyr 1.11916 0.0121 0.1031 0.0439 35.7843 0.3859 3.2978 1.4033 1.28342 0.0138 0.1258 0.1057 22.7599 0.2455 2.2314 1.8743 4.76972 0.0514 0.4676 0.3928 5.05775 0.0545 0.4959 0.4165 0.251616 2.7100e- 003 0.0247 0.0207	s Use RBTUI/yr 1.11916 0.0121 0.1031 0.0439 6.6000e-004 35.7843 0.3859 3.2978 1.4033 0.0211 1.28342 0.0138 0.1258 0.1057 7.5000e-004 22.7599 0.2455 2.2314 1.6743 0.0134 4.76972 0.0514 0.4676 0.3928 2.8100e-003 5.05775 0.0545 0.4959 0.4165 2.3800e-003 0.251616 2.7100e-003 0.0247 0.0207 1.5000e-004	s Use PM10 L111916 0.0121 0.1031 0.0439 6.6000e-004 35.7843 0.3859 3.2978 1.4033 0.0211 1.28342 0.0138 0.1258 0.1057 7.5000e-004 22.7598 0.2455 2.2314 1.8743 0.0134 4.76972 0.0514 0.4676 0.3928 2.8100e-003 5.05775 0.0545 0.4959 0.4165 2.9800e-003 0.251616 2.7100e-003 0.0247 0.0207 1.5000e-004	s Use PM10 PM10 PM10 RBTUlyr Ib/day 1.11916 0.0121 0.1031 0.0439 6.6000e-004 8.3400e-003 35.7843 0.3859 3.2978 1.4033 0.0211 0.2666 1.28342 0.0138 0.1258 0.1057 7.5000e-004 9.5600e-003 22.7599 0.2455 2.2314 1.8743 0.0134 0.1696 4.76972 0.0514 0.4676 0.3928 2.8100e-003 0.0355 5.05775 0.0545 0.4959 0.4165 2.2800e-003 0.0377 0.251616 2.7100e-003 0.0247 0.0207 1.5000e-004 1.8700e-003	KBTUlyr Ibids Ibids PM10 PM10 Total 1.11916 0.0121 0.1031 0.0439 6.6000e 004 8.3400e 003 9.5500e 003 9.5500e 003 9.5500e 003 9.5500e 003 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.036 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 <td< td=""><td>s Use PM10 PM10 PM10 Total PM2.5 KBTUlyr tbclsv 1.11916 0.0121 0.1031 0.0439 6.6000e-004 8.3400e-003 8.3400e-003 8.3400e-003 0.033 35.7843 0.3959 3.2978 1.4033 0.0211 0.2666 0.2666 0.2666 1.28342 0.0138 0.1258 0.1057 7.500e-04 9.560e-03 9.560e-003 0.03 22.7599 0.2455 2.2314 1.8743 0.0134 0.1696 0.1696 4.76972 0.0514 0.4676 0.3928 2.810e-03 0.0355 0.0355 5.05775 0.0545 0.4959 0.4165 2.980e-09 0.0377 0.0377 0.251616 2.7100e-003 0.0247 0.0207 1.5000e-004 1.8700e-003 0.1870e-003</td><td>s Use Image: Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th</td><td>KBTUlyr Bull PM0 PM10 PM10 Total PM2.5 PM2.5 Total 1.11916 0.0121 0.1031 0.0439 6.6000e OO4 8.3400e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.000 9.000 9.000 9.000 9.000 9.5500e OO3 9.5500e OO3 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000</td><td> RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTU</td><td> No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.</td><td> BTU-yr B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10</td><td> RBTUlyr Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday </td><td> RBTUlyr State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State St</td></td<>	s Use PM10 PM10 PM10 Total PM2.5 KBTUlyr tbclsv 1.11916 0.0121 0.1031 0.0439 6.6000e-004 8.3400e-003 8.3400e-003 8.3400e-003 0.033 35.7843 0.3959 3.2978 1.4033 0.0211 0.2666 0.2666 0.2666 1.28342 0.0138 0.1258 0.1057 7.500e-04 9.560e-03 9.560e-003 0.03 22.7599 0.2455 2.2314 1.8743 0.0134 0.1696 0.1696 4.76972 0.0514 0.4676 0.3928 2.810e-03 0.0355 0.0355 5.05775 0.0545 0.4959 0.4165 2.980e-09 0.0377 0.0377 0.251616 2.7100e-003 0.0247 0.0207 1.5000e-004 1.8700e-003 0.1870e-003	s Use Image: Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th	KBTUlyr Bull PM0 PM10 PM10 Total PM2.5 PM2.5 Total 1.11916 0.0121 0.1031 0.0439 6.6000e OO4 8.3400e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.000 9.000 9.000 9.000 9.000 9.5500e OO3 9.5500e OO3 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000	RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTU	No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	BTU-yr B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10	RBTUlyr Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday	RBTUlyr State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State St

6.0 Area Detail

6.1 Mitigation Measures Area

Date: 1/6/2021 1:54 PM

CalEEMod Version: CalEEMod.2016.3.2 Page 33 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	iay		
Mitigated	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92
Unmitigated	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

6.2 Area by SubCategory Unmitigated

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/	day							lb/c	lay		<u> </u>
Architectural Coating	2.2670					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	24.1085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	1.6500	14.1000	6.0000	0.0900		1.1400	1.1400		1.1400	1.1400	0.0000	18,000.00 00	18,000.00 00	0.3450	0.3300	18,106.9 50
Landscaping	2.4766	0.9496	82.4430	4.3600e- 003		0.4574	0.4574		0.4574	0.4574		148.5950	148.5950	0.1424		152.1542
Total	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

Page 34 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

6.2 Area by SubCategory Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/	day							lb/c	day		
Architectural Coating	2.2670					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	24.1085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	1.6500	14.1000	6.0000	0.0900		1.1400	1.1400		1.1400	1.1400	0.0000	18,000.00 00	18,000.00 00	0.3450	0.3300	18,106.96 50
Landscaping	2.4766	0.9496	82.4430	4.3600e- 003		0.4574	0.4574		0.4574	0.4574		148.5950	148.5950	0.1424		152.1542
Total	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

CalEEMod Version: CalEEMod.2016.3.2 Page 35 of 35 Date: 1/6/2021 1:54 PM Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>					X2	
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	ĺ
User Defined Equipment		•				Iş
Equipment Type	Number	1				

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Village South Specific Plan (Proposed) Los Angeles-South Coast County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	45.00	1000sqft	1.03	45,000.00	0
High Turnover (Sit Down Restaurant)	36.00	1000sqft	0.83	36,000.00	0
Hotel	50.00	Room	1.67	72,600.00	0
Quality Restaurant	8.00	1000sqft	0.18	8,000.00	0
Apartments Low Rise	25.00	Dwelling Unit	1.56	25,000.00	72
Apartments Mid Rise	975.00	Dwelling Unit	25.66	975,000.00	2789
Regional Shopping Center	56.00	1000sqft	1.29	56,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	9			Operational Year	2028
Utility Company	Southern California Edison	į.			
CO2 Intensity (lb/MWhr)	702.44	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (Ib/MWhr)	.006

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

 $\label{lem:construction} \textbf{Construction Phase - See SWAPE comment regarding individual construction phase lengths.}$

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use

 $Construction\ Off-road\ Equipment\ Mitigation\ -\ See\ SWAPE\ comment\ on\ construction-related\ mitigation.$

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

Table Name	Column Name	Default Value	New Value
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	NumberWood	1.25	0.00
tblFireplaces	NumberWood	48.75	0.00
tblVehicleTrips	ST_TR	7.16	6.17
tblVehicleTrips	ST_TR	6.39	3.87
tblVehicleTrips	ST_TR	2.46	1.39
tblVehicleTrips	ST_TR	158.37	79.82
tblVehicleTrips	ST_TR	8.19	3.75
tblVehicleTrips	ST_TR	94.36	63.99
tblVehicleTrips	ST_TR	49.97	10.74
tblVehicleTrips	SU_TR	6.07	6.16
tblVehicleTrips	SU_TR	5.86	4.18
tblVehicleTrips	SU_TR	1.05	0.69
tblVehicleTrips	SU_TR	131.84	78.27

 CalEEMod Version: CalEEMod.2016.3.2
 Page 3 of 35
 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

tblVehicleTrips tblVehicleTrips tblVehicleTrips tblVehicleTrips	SU_TR SU_TR SU_TR SU_TR WD_TR	5.95 72.16 25.24 6.59	3.20 57.65 6.39
tblVehicleTrips	SU_TR WD_TR	25.24	6.39
i i	WD_TR		4
tblVehicleTrips	i	6.59	+
			5.83
tblVehicleTrips	WD_TR	6.65	4.13
tblVehicleTrips	WD_TR	11.03	6.41
tblVehicleTrips	WD_TR	127.15	65.80
tblVehicleTrips	WD_TR	8.17	3.84
tblVehicleTrips	WD_TR	89.95	62.64
tblVehicleTrips	WD_TR	42.70	9.43
tblWoodstoves	NumberCatalytic	1.25	0.00
tblWoodstoves	NumberCatalytic	48.75	0.00
tblWoodstoves	NumberNoncatalytic	1.25	0.00
tblWoodstoves	NumberNoncatalytic	48.75	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves V	/oodstoveWoodMass	999.60	0.00
tblWoodstoves V	oodstoveWoodMass	999.60	0.00

2.0 Emissions Summary

 CalEEMod Version: CalEEMod.2016.3.2
 Page 4 of 35
 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.1 Overall Construction (Maximum Daily Emission) <u>Unmitigated Construction</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	day							lb/d	lay		
2021	4.2865	46.4651	31.6150	0.0642	18.2675	2.0461	20.3135	9.9840	1.8824	11.8664	0.0000	6,221.493 7	6,221.493 7	1.9491	0.0000	6,270.221 4
2022	5.7218	38.9024	47.3319	0.1455	9.8688	1.6366	10.7736	3.6558	1.5057	5.1615	0.0000	14,630.30 99	14,630.30 99	1.9499	0.0000	14,657.26 63
2023	5.2705	26.4914	44.5936	0.1413	9.8688	0.7800	10.6488	2.6381	0.7328	3.3708	0.0000	14,210.34 24	14,210.34 24	1.0230	0.0000	14,235.91 60
2024	237.2328	9.5610	15.0611	0.0243	1.7884	0.4698	1.8628	0.4743	0.4322	0.5476	0.0000	2,352.417 8	2,352.417 8	0.7175	0.0000	2,370.355 0
Maximum	237.2328	46.4651	47.3319	0.1455	18.2675	2.0461	20.3135	9.9840	1.8824	11.8664	0.0000	14,630.30 99	14,630.30 99	1.9499	0.0000	14,657.26 63

 CalEEMod Version: CalEEMod.2016.3.2
 Page 5 of 35
 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.1 Overall Construction (Maximum Daily Emission) Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb.	/day						•	lb/	day		•
2021	4.2865	46.4651	31.6150	0.0642	18.2675	2.0461	20.3135	9.9840	1.8824	11.8664	0.0000	6,221.493 7	6,221.493 7	1.9491	0.0000	6,270.221
2022	5.7218	38.9024	47.3319	0.1455	9.8688	1.6366	10.7736	3.6558	1.5057	5.1615	0.0000	14,630.30 99	14,630.30 99	1.9499	0.0000	14,657.26
2023	5.2705	26.4914	44.5936	0.1413	9.8688	0.7800	10.6488	2.6381	0.7328	3.3708	0.0000	14,210.34 24	14,210.34 24	1.0230	0.0000	14,235.91 60
2024	237.2328	9.5610	15.0611	0.0243	1.7884	0.4698	1.8628	0.4743	0.4322	0.5476	0.0000	2,352.417 8	2,352.417 8	0.7175	0.0000	2,370.355 0
Maximum	237.2328	46.4651	47.3319	0.1455	18.2675	2.0461	20.3135	9.9840	1.8824	11.8664	0.0000	14,630.30 99	14,630.30 99	1.9499	0.0000	14,657.26 63
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

 CalEEMod Version: CalEEMod.2016.3.2
 Page 6 of 35
 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/i	day							lb/c	iay		
Area	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.1 92
Energy	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.63 7
Mobile	9.5233	45.9914	110.0422	0.4681	45.9592	0.3373	46.2965	12.2950	0.3132	12.6083		47,917.80 05	47,917.80 05	2.1953		47,972.68 39
Total	40.7912	67.7872	202.7424	0.6043	45.9592	2.4640	48.4231	12.2950	2.4399	14.7349	0.0000	74,422.37 87	74,422.37 87	2.8429	0.4832	74,637.44 17

Mitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			<u> </u>		lb/i	day							lb/d	lay		
Area	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.1 92
Energy	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292	İ	8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.63 7
Mobile	9.5233	45.9914	110.0422	0.4681	45.9592	0.3373	46.2965	12.2950	0.3132	12.6083	!	47,917.80 05	47,917.80 05	2.1953		47,972.6 39
Total	40.7912	67.7872	202.7424	0.6043	45.9592	2.4640	48.4231	12.2950	2.4399	14.7349	0.0000	74,422.37 87	74,422.37 87	2.8429	0.4832	74,637.4 17

Page 7 of 35

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	9/1/2021	10/12/2021	5	30	
2	Site Preparation	Site Preparation	10/13/2021	11/9/2021	5	20	
3	Grading	Grading	11/10/2021	1/11/2022	5	45	
4	Building Construction	Building Construction	1/12/2022	12/12/2023	5	500	
5	Paving	Paving	12/13/2023	1/30/2024	5	35	
6	Architectural Coating	Architectural Coating	1/31/2024	3/19/2024	5	35	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Page 8 of 35

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Excavators	3	8.00	158	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Page 9 of 35

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	0.00	458.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	7	18.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	801.00	143.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	160.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2021

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust					3.3074	0.0000	3.3074	0.5008	0.0000	0.5008			0.0000			0.0000
Off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411	İ	3,747.944 9	3,747.944 9	1.0549		3,774.317 4
Total	3.1651	31.4407	21.5650	0.0388	3.3074	1.5513	4.8588	0.5008	1.4411	1.9419	İ	3,747.944 9	3,747.944 9	1.0549		3,774.317 4

CalEEMod Version: CalEEMod.2016.3.2 Page 10 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.2 Demolition - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.1304	4.1454	1.0182	0.0117	0.2669	0.0128	0.2797	0.0732	0.0122	0.0854		1,269.855 5	1,269.855 5	0.0908		1,272.125
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0715	0.0489	0.5524	1.6100e- 003	0.1677	1.3500e- 003	0.1690	0.0445	1.2500e- 003	0.0457		160.8377	160.8377	4.7300e- 003		160.9560
Total	0.2019	4.1943	1.5706	0.0133	0.4346	0.0141	0.4487	0.1176	0.0135	0.1311		1,430.693 2	1,430.693 2	0.0955		1,433.081 2

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					3.3074	0.0000	3.3074	0.5008	0.0000	0.5008			0.0000			0.0000
Off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411	0.0000	3,747.944 9	3,747.944 9	1.0549		3,774.317 4
Total	3.1651	31.4407	21.5650	0.0388	3.3074	1.5513	4.8588	0.5008	1.4411	1.9419	0.0000	3,747.944 9	3,747.944 9	1.0549		3,774.317 4

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.2 Demolition - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.1304	4.1454	1.0182	0.0117	0.2669	0.0128	0.2797	0.0732	0.0122	0.0854		1,269.855 5	1,269.855 5	0.0908		1,272.125 2
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0715	0.0489	0.5524	1.6100e- 003	0.1677	1.3500e- 003	0.1690	0.0445	1.2500e- 003	0.0457		160.8377	160.8377	4.7300e- 003		160.9560
Total	0.2019	4.1943	1.5706	0.0133	0.4346	0.0141	0.4487	0.1176	0.0135	0.1311		1,430.693 2	1,430.693 2	0.0955		1,433.081 2

3.3 Site Preparation - 2021 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					18.0663	0.0000	18.0663	9.9307	0.0000	9.9307			0.0000			0.0000
Off-Road	3.8882	40.4971	21.1543	0.0380		2.0445	2.0445		1.8809	1.8809		3,685.656 9	3,685.656 9	1.1920		3,715.457 3
Total	3.8882	40.4971	21.1543	0.0380	18.0663	2.0445	20.1107	9.9307	1.8809	11.8116		3,685.656 9	3,685.656 9	1.1920		3,715.457 3

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.3 Site Preparation - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category		Ibiday									lb/day						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000	
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000	
Worker	0.0858	0.0587	0.6629	1.9400e- 003	0.2012	1.6300e- 003	0.2028	0.0534	1.5000e- 003	0.0549		193.0052	193.0052	5.6800e- 003		193.1472	
Total	0.0858	0.0587	0.6629	1.9400e- 003	0.2012	1.6300e- 003	0.2028	0.0534	1.5000e- 003	0.0549		193.0052	193.0052	5.6800e- 003		193.1472	

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day									lb/day						
Fugitive Dust					18.0663	0.0000	18.0663	9.9307	0.0000	9.9307			0.0000			0.0000
Off-Road	3.8882	40.4971	21.1543	0.0380		2.0445	2.0445		1.8809	1.8809	0.0000	3,685.656 9	3,685.656 9	1.1920		3,715.457 3
Total	3.8882	40.4971	21.1543	0.0380	18.0663	2.0445	20.1107	9.9307	1.8809	11.8116	0.0000	3,685.656 9	3,685.656 9	1.1920		3,715.457 3

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.3 Site Preparation - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0858	0.0587	0.6629	1.9400e- 003	0.2012	1.6300e- 003	0.2028	0.0534	1.5000e- 003	0.0549		193.0052	193.0052	5.6800e- 003		193.1472
Total	0.0858	0.0587	0.6629	1.9400e- 003	0.2012	1.6300e- 003	0.2028	0.0534	1.5000e- 003	0.0549		193.0052	193.0052	5.6800e- 003		193.1472

3.4 Grading - 2021 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	4.1912	46.3998	30.8785	0.0620		1.9853	1.9853		1.8265	1.8265		6,007.043 4	6,007.043 4	1.9428		6,055.613 4
Total	4.1912	46.3998	30.8785	0.0620	8.6733	1.9853	10.6587	3.5965	1.8265	5.4230		6,007.043 4	6,007.043 4	1.9428		6,055.613 4

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/e	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0954	0.0652	0.7365	2.1500e- 003	0.2236	1.8100e- 003	0.2254	0.0593	1.6600e- 003	0.0610		214.4502	214.4502	6.3100e- 003		214.6080
Total	0.0954	0.0652	0.7365	2.1500e- 003	0.2236	1.8100e- 003	0.2254	0.0593	1.6600e- 003	0.0610		214.4502	214.4502	6.3100e- 003		214.6080

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	4.1912	46.3998	30.8785	0.0620		1.9853	1.9853		1.8265	1.8265	0.0000	6,007.043 4	6,007.043 4	1.9428		6,055.613 4
Total	4.1912	46.3998	30.8785	0.0620	8.6733	1.9853	10.6587	3.5965	1.8265	5.4230	0.0000	6,007.043 4	6,007.043 4	1.9428		6,055.613 4

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category				•	lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0954	0.0652	0.7365	2.1500e- 003	0.2236	1.8100e- 003	0.2254	0.0593	1.6600e- 003	0.0610	l	214.4502	214.4502	6.3100e- 003		214.6080
Total	0.0954	0.0652	0.7365	2.1500e- 003	0.2236	1.8100e- 003	0.2254	0.0593	1.6600e- 003	0.0610		214.4502	214.4502	6.3100e- 003		214.6080

3.4 Grading - 2022 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust	-				8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	3.6248	38.8435	29.0415	0.0621		1.6349	1.6349		1.5041	1.5041	İ	6,011.410 5	6,011.410 5	1.9442		6,060.015
Total	3.6248	38.8435	29.0415	0.0621	8.6733	1.6349	10.3082	3.5965	1.5041	5.1006		6,011.410 5	6,011.410 5	1.9442		6,060.015

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2022 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0896	0.0589	0.6784	2.0800e- 003	0.2236	1.7500e- 003	0.2253	0.0593	1.6100e- 003	0.0609		206.9139	206.9139	5.7000e- 003		207.0563
Total	0.0896	0.0589	0.6784	2.0800e- 003	0.2236	1.7500e- 003	0.2253	0.0593	1.6100e- 003	0.0609		206.9139	206.9139	5.7000e- 003		207.0563

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	3.6248	38.8435	29.0415	0.0621		1.6349	1.6349		1.5041	1.5041	0.0000	6,011.410 5	6,011.410 5	1.9442		6,060.015 8
Total	3.6248	38.8435	29.0415	0.0621	8.6733	1.6349	10.3082	3.5965	1.5041	5.1006	0.0000	6,011.410 5	6,011.410 5	1.9442		6,060.015 8

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2022 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0896	0.0589	0.6784	2.0800e- 003	0.2236	1.7500e- 003	0.2253	0.0593	1.6100e- 003	0.0609		206.9139	206.9139	5.7000e- 003		207.0563
Total	0.0896	0.0589	0.6784	2.0800e- 003	0.2236	1.7500e- 003	0.2253	0.0593	1.6100e- 003	0.0609		206.9139	206.9139	5.7000e- 003		207.0563

3.5 Building Construction - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		2,554.333 6	2,554.333 6	0.6120		2,569.632 2
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		2,554.333 6	2,554.333 6	0.6120		2,569.632 2

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2022 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.4284	13.1673	3.8005	0.0354	0.9155	0.0256	0.9412	0.2636	0.0245	0.2881		3,789.075 0	3,789.075 0	0.2381		3,795.028 3
Worker	3.5872	2.3593	27.1680	0.0832	8.9533	0.0701	9.0234	2.3745	0.0646	2.4390		8,286.901 3	8,286.901 3	0.2282		8,292.605 8
Total	4.0156	15.5266	30.9685	0.1186	9.8688	0.0957	9.9645	2.6381	0.0891	2.7271		12,075.97 63	12,075.97 63	0.4663		12,087.63 41

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	2,554.333 6	2,554.333 6	0.6120		2,569.632 2
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	2,554.333 6	2,554.333 6	0.6120		2,569.632

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2022 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.4284	13.1673	3.8005	0.0354	0.9155	0.0256	0.9412	0.2636	0.0245	0.2881		3,789.075 0	3,789.075 0	0.2381		3,795.028 3
Worker	3.5872	2.3593	27.1680	0.0832	8.9533	0.0701	9.0234	2.3745	0.0646	2.4390		8,286.901 3	8,286.901 3	0.2282		8,292.605 8
Total	4.0156	15.5266	30.9685	0.1186	9.8688	0.0957	9.9645	2.6381	0.0891	2.7271		12,075.97 63	12,075.97 63	0.4663		12,087.63 41

3.5 Building Construction - 2023 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2023 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			•		lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.3183	9.9726	3.3771	0.0343	0.9156	0.0122	0.9277	0.2636	0.0116	0.2752	ļ	3,671.400 7	3,671.400 7	0.2096		3,676.641 7
Worker	3.3795	2.1338	24.9725	0.0801	8.9533	0.0681	9.0214	2.3745	0.0627	2.4372	l	7,983.731 8	7,983.731 8	0.2055		7,988.868 3
Total	3.6978	12.1065	28.3496	0.1144	9.8688	0.0803	9.9491	2.6381	0.0743	2.7124		11,655.13 25	11,655.13 25	0.4151		11,665.50 99

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day	v.	
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2023 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.3183	9.9726	3.3771	0.0343	0.9156	0.0122	0.9277	0.2636	0.0116	0.2752	1	3,671.400 7	3,671.400 7	0.2096		3,676.641 7
Worker	3.3795	2.1338	24.9725	0.0801	8.9533	0.0681	9.0214	2.3745	0.0627	2.4372	1	7,983.731 8	7,983.731 8	0.2055		7,988.868 3
Total	3.6978	12.1065	28.3496	0.1144	9.8688	0.0803	9.9491	2.6381	0.0743	2.7124		11,655.13 25	11,655.13 25	0.4151		11,665.50 99

3.6 Paving - 2023 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694		2,207.584 1	2,207.584 1	0.7140		2,225.433 6
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694		2,207.584 1	2,207.584 1	0.7140		2,225.433 6

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2023 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0633	0.0400	0.4677	1.5000e- 003	0.1677	1.2800e- 003	0.1689	0.0445	1.1700e- 003	0.0456		149.5081	149.5081	3.8500e- 003		149.6043
Total	0.0633	0.0400	0.4677	1.5000e- 003	0.1677	1.2800e- 003	0.1689	0.0445	1.1700e- 003	0.0456		149.5081	149.5081	3.8500e- 003		149.6043

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	!	 	0.0000			0.0000
Total	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2023 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0633	0.0400	0.4677	1.5000e- 003	0.1677	1.2800e- 003	0.1689	0.0445	1.1700e- 003	0.0456		149.5081	149.5081	3.8500e- 003		149.6043
Total	0.0633	0.0400	0.4677	1.5000e- 003	0.1677	1.2800e- 003	0.1689	0.0445	1.1700e- 003	0.0456		149.5081	149.5081	3.8500e- 003		149.6043

3.6 Paving - 2024 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	ľ				lb/	day							lb/c	lay		
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310		2,207.547 2	2,207.547 2	0.7140		2,225.396
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	İ	2,207.547 2	2,207.547 2	0.7140		2,225.396

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2024 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0601	0.0364	0.4354	1.4500e- 003	0.1677	1.2600e- 003	0.1689	0.0445	1.1600e- 003	0.0456		144.8706	144.8706	3.5300e- 003		144.9587
Total	0.0601	0.0364	0.4354	1.4500e- 003	0.1677	1.2600e- 003	0.1689	0.0445	1.1600e- 003	0.0456		144.8706	144.8706	3.5300e- 003		144.9587

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day	v.	
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396 3
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396 3

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2024 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0601	0.0364	0.4354	1.4500e- 003	0.1677	1.2600e- 003	0.1689	0.0445	1.1600e- 003	0.0456		144.8706	144.8706	3.5300e- 003		144.9587
Total	0.0601	0.0364	0.4354	1.4500e- 003	0.1677	1.2600e- 003	0.1689	0.0445	1.1600e- 003	0.0456		144.8706	144.8706	3.5300e- 003		144.9587

3.7 Architectural Coating - 2024 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Archit. Coating	236.4115					0.0000	0.0000		0.0000	0.0000		į	0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	ļ	281.4481	281.4481	0.0159		281.8443
Total	236.5923	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.7 Architectural Coating - 2024 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.6406	0.3886	4.6439	0.0155	1.7884	0.0134	1.8018	0.4743	0.0123	0.4866		1,545.286 0	1,545.286 0	0.0376		1,546.226 2
Total	0.6406	0.3886	4.6439	0.0155	1.7884	0.0134	1.8018	0.4743	0.0123	0.4866		1,545.286 0	1,545.286 0	0.0376		1,546.226 2

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Archit. Coating	236.4115					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443
Total	236.5923	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.7 Architectural Coating - 2024 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.6406	0.3886	4.6439	0.0155	1.7884	0.0134	1.8018	0.4743	0.0123	0.4866		1,545.286 0	1,545.286 0	0.0376		1,546.226 2
Total	0.6406	0.3886	4.6439	0.0155	1.7884	0.0134	1.8018	0.4743	0.0123	0.4866		1,545.286 0	1,545.286 0	0.0376		1,546.226 2

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

CalEEMod Version: CalEEMod.2016.3.2 Page 28 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/s	day							lb/c	day		
Mitigated	9.5233	45.9914	110.0422	0.4681	45.9592	0.3373	46.2965	12.2950	0.3132	12.6083		47,917.80 05	47,917.80 05	2.1953		47,972.68 39
Unmitigated	9.5233	45.9914	110.0422	0.4681	45.9592	0.3373	46.2965	12.2950	0.3132	12.6083		47,917.80 05	47,917.80 05	2.1953		47,972.68 39

4.2 Trip Summary Information

	Ave	erage Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	145.75	154.25	154.00	506,227	506,227
Apartments Mid Rise	4,026.75	3,773.25	4075.50	13,660,065	13,660,065
General Office Building	288.45	62.55	31.05	706,812	706,812
High Turnover (Sit Down Restaurant)	2,368.80	2,873.52	2817.72	3,413,937	3,413,937
Hotel	192.00	187.50	160.00	445,703	445,703
Quality Restaurant	501.12	511.92	461.20	707,488	707,488
Regional Shopping Center	528.08	601.44	357.84	1,112,221	1,112,221
Total	8,050.95	8,164.43	8,057.31	20,552,452	20,552,452

4.3 Trip Type Information

Page 29 of 35

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

	l.	Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	- 11	3
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
High Turnover (Sit Down	16.60	8.40	6.90	8.50	72.50	19.00	37	20	43
Hotel	16.60	8.40	6.90	19.40	61.60	19.00	58	38	4
Quality Restaurant	16.60	8.40	6.90	12.00	69.00	19.00	38	18	44
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Low Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Apartments Mid Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
General Office Building	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
High Turnover (Sit Down Restaurant)	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Hotel	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Quality Restaurant	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Regional Shopping Center	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Page 30 of 35

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/i	day							lb/c	lay		
NaturalGas Mitigated	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7
NaturalGas Unmitigated	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7

CalEEMod Version: CalEEMod.2016.3.2 Page 31 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	lay		
Apartments Low Rise	1119.16	0.0121	004 003 003 003 003									131.6662	131.6662	2.5200e- 003	2.4100e- 003	132.4486	
Apartments Mid Rise	35784.3	0.3859	3.2978	1.4033	0.0211		0.2666	0.2666		0.2666	0.2666		4,209.916 4	4,209.916 4	0.0807	0.0772	4,234.933 9
General Office Building	1283.42	0.0138	0.1258	0.1057	7.5000e- 004		9.5600e- 003	9.5600e- 003		9.5600e- 003	9.5600e- 003		150.9911	150.9911	2.8900e- 003	2.7700e- 003	151.8884
High Turnover (Sit Down Restaurant)		0.2455	2.2314	1.8743	0.0134		0.1696	0.1696		0.1696	0.1696		2,677.634 2	2,677.634 2	0.0513	0.0491	2,693.546 0
Hotel	4769.72	0.0514	0.4676	0.3928	2.8100e- 003		0.0355	0.0355		0.0355	0.0355		561.1436	561.1436	0.0108	0.0103	564.4782
Quality Restaurant	5057.75	0.0545	0.4959	0.4165	2.9800e- 003		0.0377	0.0377		0.0377	0.0377		595.0298	595.0298	0.0114	0.0109	598.5658
Regional Shopping Center		2.7100e- 003	0.0247	0.0207	1.5000e- 004		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003		29.6019	29.6019	5.7000e- 004	5.4000e- 004	29.7778
Total		0.7660	6.7463	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7

CalEEMod Version: CalEEMod.2016.3.2 Page 32 of 35 Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

5.2 Energy by Land Use - NaturalGas Mitigated

s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
kBTU/yr					lb/	day							lb/c	lay		
1.11916	0.0121	004 003 003 003 003								131.6662	131.6662	2.5200e- 003	2.4100e- 003	132.4486		
35.7843	0.3859	3.2978	1.4033	0.0211		0.2666	0.2666		0.2666	0.2666		4,209.916 4	4,209.916 4	0.0807	0.0772	4,234.933 9
1.28342	0.0138	0.1258	0.1057	7.5000e- 004		9.5600e- 003	9.5600e- 003		9.5600e- 003	9.5600e- 003		150.9911	150.9911	2.8900e- 003	2.7700e- 003	151.8884
22.7599	0.2455	2.2314	1.8743	0.0134		0.1696	0.1696		0.1696	0.1696		2,677.634 2	2,677.634 2	0.0513	0.0491	2,693.546 0
4.76972	0.0514	0.4676	0.3928	2.8100e- 003		0.0355	0.0355		0.0355	0.0355		561.1436	561.1436	0.0108	0.0103	564.4782
5.05775	0.0545	0.4959	0.4165	2.9800e- 003		0.0377	0.0377		0.0377	0.0377		595.0298	595.0298	0.0114	0.0109	598.5658
0.251616	2.7100e- 003	0.0247	0.0207	1.5000e- 004		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003		29.6019	29.6019	5.7000e- 004	5.4000e- 004	29.7778
Ï	0.7660	6.7463	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7
1 2 2	1.11916 1.11916 35.7843 1.28342 22.7599 4.76972 5.05775	KBTUyr 1.11916 0.0121 35.7843 0.3859 1.28342 0.0138 22.7599 0.2455 4.76972 0.0514 5.05775 0.0545 2.21006-003	KBTUlyr 1.11916	KBTUyr 1.11916 0.0121 0.1031 0.0439 35.7843 0.3859 3.2978 1.4033 1.28342 0.0138 0.1258 0.1057 22.7599 0.2455 2.2314 1.8743 4.76972 0.0514 0.4676 0.3928 5.05775 0.0545 0.4959 0.4165 0.251616 2.7100e 0.0247 0.0207	KBTUyr 1.11916 0.0121 0.1031 0.0439 6.6000e-004 35.7843 0.3859 3.2978 1.4033 0.0211 1.28342 0.0138 0.1258 0.1057 7.5000e-004 22.7599 0.2455 2.2314 1.8743 0.0134 4.76972 0.0514 0.4676 0.3928 2.8100e-003 5.05775 0.0545 0.4959 0.4165 2.9800e-003	National Color	KBTUlyr Ibday 1.11916 0.0121 0.1031 0.0439 6.6000e- 004 003 35.7843 0.3859 3.2978 1.4033 0.0211 0.2666 1.28342 0.0138 0.1258 0.1057 7.5000e- 0.04 22.7599 0.2455 2.2314 1.8749 0.0134 0.1696 4.76972 0.0514 0.4676 0.3928 2.8100e- 003 5.05775 0.0545 0.4959 0.4165 2.9800e- 0.0377 0.251616 2.7100e- 0.0247 0.0207 1.5000e- 0.03 0.03	1.11916	1.11916	National Color	1.11916	1.11916	National Color	KBTUlyr	1.11916 0.0121 0.1031 0.0439 6.6000e- 0.83400e- 0.033 0.3400e- 0.3400e	1.11916 0.0121 0.1031 0.0439 6.6000e 0.83400e 0.033 0.33400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.0211 0.26666 0.2666 0.2666 0.2666 0.26666 0.26666 0.26666 0.26666 0

6.0 Area Detail

6.1 Mitigation Measures Area

Page 33 of 35

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/i	day							lb/c	iay		
Mitigated	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92
Unmitigated	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

6.2 Area by SubCategory Unmitigated

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/	day							lb/c	lay		<u> </u>
Architectural Coating	2.2670					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	24.1085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	1.6500	14.1000	6.0000	0.0900		1.1400	1.1400		1.1400	1.1400	0.0000	18,000.00 00	18,000.00 00	0.3450	0.3300	18,106.9 50
Landscaping	2.4766	0.9496	82.4430	4.3600e- 003		0.4574	0.4574		0.4574	0.4574		148.5950	148.5950	0.1424		152.1542
Total	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

Page 34 of 35

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

6.2 Area by SubCategory Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory			3		lb/	day							lb/c	day		
Architectural Coating	2.2670					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	24.1085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	1.6500	14.1000	6.0000	0.0900		1.1400	1.1400		1.1400	1.1400	0.0000	18,000.00 00	18,000.00 00	0.3450	0.3300	18,106.96 50
Landscaping	2.4766	0.9496	82.4430	4.3600e- 003		0.4574	0.4574		0.4574	0.4574		148.5950	148.5950	0.1424		152.1542
Total	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

CalEEMod Version: CalEEMod.2016.3.2 Page 35 of 35 Date: 1/6/2021 1:49 PM Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter Fire Pumps and Emergency Generators Equipment Type Number Hours/Day Hours/Year Horse Power Load Factor Fuel Type **Boilers** Equipment Type Number Heat Input/Day Heat Input/Year Boiler Rating Fuel Type **User Defined Equipment** Equipment Type Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Village South Specific Plan (Proposed) Los Angeles-South Coast County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	45.00	1000sqft	1.03	45,000.00	0
High Turnover (Sit Down Restaurant)	36.00	1000sqft	0.83	36,000.00	0
Hotel	50.00	Room	1.67	72,600.00	0
Quality Restaurant	8.00	1000sqft	0.18	8,000.00	0
Apartments Low Rise	25.00	Dwelling Unit	1.56	25,000.00	72
Apartments Mid Rise	975.00	Dwelling Unit	25.66	975,000.00	2789
Regional Shopping Center	56.00	1000sqft	1.29	56,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	9			Operational Year	2028
Utility Company	Southern California Edison	ı			
CO2 Intensity (lb/MWhr)	702.44	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (lb/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

 $\label{lem:construction} \textbf{Construction Phase - See SWAPE comment regarding individual construction phase lengths.}$

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use -

 $Construction\ Off-road\ Equipment\ Mitigation\ -\ See\ SWAPE\ comment\ on\ construction-related\ mitigation.$

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

Trips and VMT - Local hire provision

Table Name	Column Name	Default Value	New Value
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	NumberWood	1.25	0.00
tblFireplaces	NumberWood	48.75	0.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblVehicleTrips	ST_TR	7.16	6.17
tblVehicleTrips	ST_TR	6.39	3.87
tblVehicleTrips	ST_TR	2.46	1.39
tblVehicleTrips	ST_TR	158.37	79.82

 CalEEMod Version: CalEEMod.2016.3.2
 Page 3 of 44
 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

tblVehicleTrips	ST_TR	8.19	3.75
tblVehicleTrips	ST_TR	94.36	63.99
tblVehicleTrips	ST_TR	49.97	10.74
tblVehicleTrips	SU_TR	6.07	6.16
tblVehicleTrips	SU_TR	5.86	4.18
tblVehicleTrips	SU_TR	1.05	0.69
tblVehicleTrips	SU_TR	131.84	78.27
tblVehicleTrips	SU_TR	5.95	3.20
tblVehicleTrips	SU_TR	72.16	57.65
tblVehicleTrips	SU_TR	25.24	6.39
tblVehicleTrips	WD_TR	6.59	5.83
tblVehicleTrips	WD_TR	6.65	4.13
tblVehicleTrips	WD_TR	11.03	6.41
tblVehicleTrips	WD_TR	127.15	65.80
tblVehicleTrips	WD_TR	8.17	3.84
tblVehicleTrips	WD_TR	89.95	62.64
tblVehicleTrips	WD_TR	42.70	9.43
tblWoodstoves	NumberCatalytic	1.25	0.00
tblWoodstoves	NumberCatalytic	48.75	0.00
tblWoodstoves	NumberNoncatalytic	1.25	0.00
tblWoodstoves	NumberNoncatalytic	48.75	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00

2.0 Emissions Summary

 CalEEMod Version: CalEEMod.2016.3.2
 Page 4 of 44
 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.1 Overall Construction Unmitigated Construction

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tor	ns/yr							МТ	/yr	,	
2021	0.1704	1.8234	1.1577	2.3800e- 003	0.4141	0.0817	0.4958	0.1788	0.0754	0.2542	0.0000	210.7654	210.7654	0.0600	0.0000	212.266
2022	0.5865	4.0240	5.1546	0.0155	0.9509	0.1175	1.0683	0.2518	0.1103	0.3621	0.0000	1,418.655 4	1,418.655 4	0.1215	0.0000	1,421.69 5
2023	0.5190	3.2850	4.7678	0.0147	0.8497	0.0971	0.9468	0.2283	0.0912	0.3195	0.0000	1,342.441 2	1,342.441 2	0.1115	0.0000	1,345.22 1
2024	4.1592	0.1313	0.2557	5.0000e- 004	0.0221	6.3900e- 003	0.0285	5.8700e- 003	5.9700e- 003	0.0118	0.0000	44.6355	44.6355	7.8300e- 003	0.0000	44.8311
Maximum	4.1592	4.0240	5.1546	0.0155	0.9509	0.1175	1.0683	0.2518	0.1103	0.3621	0.0000	1,418.655 4	1,418.655 4	0.1215	0.0000	1,421.69

 CalEEMod Version: CalEEMod.2016.3.2
 Page 5 of 44
 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.1 Overall Construction Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					to	ns/yr		•					МП	/yr		
2021	0.1704	1.8234	1.1577	2.3800e- 003	0.4141	0.0817	0.4958	0.1788	0.0754	0.2542	0.0000	210.7651	210.7651	0.0600	0.0000	212.265
2022	0.5865	4.0240	5.1546	0.0155	0.9509	0.1175	1.0683	0.2518	0.1103	0.3621	0.0000	1,418.655 0	1,418.655 0	0.1215	0.0000	1,421.69
2023	0.5190	3.2850	4.7678	0.0147	0.8497	0.0971	0.9468	0.2283	0.0912	0.3195	0.0000	1,342.440 9	1,342.440 9	0.1115	0.0000	1,345.22 7
2024	4.1592	0.1313	0.2557	5.0000e- 004	0.0221	6.3900e- 003	0.0285	5.8700e- 003	5.9700e- 003	0.0118	0.0000	44.6354	44.6354	7.8300e- 003	0.0000	44.8311
Maximum	4.1592	4.0240	5.1546	0.0155	0.9509	0.1175	1.0683	0.2518	0.1103	0.3621	0.0000	1,418.655 0	1,418.655 0	0.1215	0.0000	1,421.69
*	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	9-1-2021	11-30-2021	1.4091	1.4091
2	12-1-2021	2-28-2022	1.3329	1.3329
3	3-1-2022	5-31-2022	1.1499	1.1499
4	6-1-2022	8-31-2022	1.1457	1.1457
5	9-1-2022	11-30-2022	1.1415	1.1415
6	12-1-2022	2-28-2023	1.0278	1.0278
7	3-1-2023	5-31-2023	0.9868	0.9868
8	6-1-2023	8-31-2023	0.9831	0.9831

Page 6 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

9	9-1-2023	11-30-2023	0.9798	0.9798
10	12-1-2023	2-29-2024	2.8757	2.8757
11	3-1-2024	5-31-2024	1.6188	1.6188
		Highest	2.8757	2.8757

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ıs/yr							МТ	/yr	•	
Area	5.1437	0.2950	10.3804	1.6700e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.583
Energy	0.1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	3,896.073 2	3,896.073 2	0.1303	0.0468	3,913.28 3
Mobile	1.5857	7.9962	19.1834	0.0821	7.7979	0.0580	7.8559	2.0895	0.0539	2.1434	0.0000	7,620.498 6	7,620.498 6	0.3407	0.0000	7,629.01 2
Waste	:					0.0000	0.0000		0.0000	0.0000	207.8079	0.0000	207.8079	12.2811	0.0000	514.835
Water	! !					0.0000	0.0000		0.0000	0.0000	29.1632	556.6420	585.8052	3.0183	0.0755	683.756
Total	6.8692	9.5223	30.3407	0.0914	7.7979	0.2260	8.0240	2.0895	0.2219	2.3114	236.9712	12,294.18 07	12,531.15 19	15.7904	0.1260	12,963.4 51

 CalEEMod Version: CalEEMod.2016.3.2
 Page 7 of 44
 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.2 Overall Operational Mitigated Operational

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr		•	•				МП	/yr	•	<u> </u>
Area	5.1437	0.2950	10.3804	1.6700e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.5835
Energy	0.1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	3,896.073 2	3,896.073 2	0.1303	0.0468	3,913.283 3
Mobile	1.5857	7.9962	19.1834	0.0821	7.7979	0.0580	7.8559	2.0895	0.0539	2.1434	0.0000	7,620.498 6	7,620.498 6	0.3407	0.0000	7,629.016 2
Waste	:					0.0000	0.0000		0.0000	0.0000	207.8079	0.0000	207.8079	12.2811	0.0000	514.8354
Water	:					0.0000	0.0000		0.0000	0.0000	29.1632	556.6420	585.8052	3.0183	0.0755	683.7567
Total	6.8692	9.5223	30.3407	0.0914	7.7979	0.2260	8.0240	2.0895	0.2219	2.3114	236.9712	12,294.18 07	12,531.15 19	15.7904	0.1260	12,963.47 51

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Page 8 of 44

Date: 1/12/2021 2:26 PM

Village South Specific P	lan (Proposed) - Los	Angeles-South C	coast County, Annual
--------------------------	----------------------	-----------------	----------------------

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	9/1/2021	10/12/2021	5	30	
2	Site Preparation	Site Preparation	10/13/2021	11/9/2021	5	20	
3	Grading	Grading	11/10/2021	1/11/2022	5	45	
4	Building Construction	Building Construction	1/12/2022	12/12/2023	5	500	
5	Paving	Paving	12/13/2023	1/30/2024	5	35	
6	Architectural Coating	Architectural Coating	1/31/2024	3/19/2024	5	35	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Page 9 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Excavators	3	8.00	158	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Page 10 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	0.00	458.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	7	18.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	801.00	143.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	160.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2021

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ns/yr							МТ	/yr		
Fugitive Dust	:				0.0496	0.0000	0.0496	7.5100e- 003	0.0000	7.5100e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0475	0.4716	0.3235	5.8000e- 004		0.0233	0.0233		0.0216	0.0216	0.0000	51.0012	51.0012	0.0144	0.0000	51.3601
Total	0.0475	0.4716	0.3235	5.8000e- 004	0.0496	0.0233	0.0729	7.5100e- 003	0.0216	0.0291	0.0000	51.0012	51.0012	0.0144	0.0000	51.3601

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.2 Demolition - 2021 Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Hauling	1.9300e- 003	0.0634	0.0148	1.8000e- 004	3.9400e- 003	1.9000e- 004	4.1300e- 003	1.0800e- 003	1.8000e- 004	1.2600e- 003	0.0000	17.4566	17.4566	1.2100e- 003	0.0000	17.4869
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.2000e- 004	5.3000e- 004	6.0900e- 003	2.0000e- 005	1.6800e- 003	1.0000e- 005	1.6900e- 003	4.5000e- 004	1.0000e- 005	4.6000e- 004	0.0000	1.5281	1.5281	5.0000e- 005	0.0000	1.5293
Total	2.6500e- 003	0.0639	0.0209	2.0000e- 004	5.6200e- 003	2.0000e- 004	5.8200e- 003	1.5300e- 003	1.9000e- 004	1.7200e- 003	0.0000	18.9847	18.9847	1.2600e- 003	0.0000	19.0161

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Fugitive Dust					0.0496	0.0000	0.0496	7.5100e- 003	0.0000	7.5100e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0475	0.4716	0.3235	5.8000e- 004		0.0233	0.0233		0.0216	0.0216	0.0000	51.0011	51.0011	0.0144	0.0000	51.3600
Total	0.0475	0.4716	0.3235	5.8000e- 004	0.0496	0.0233	0.0729	7.5100e- 003	0.0216	0.0291	0.0000	51.0011	51.0011	0.0144	0.0000	51.3600

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.2 Demolition - 2021 Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Hauling	1.9300e- 003	0.0634	0.0148	1.8000e- 004	3.9400e- 003	1.9000e- 004	4.1300e- 003	1.0800e- 003	1.8000e- 004	1.2600e- 003	0.0000	17.4566	17.4566	1.2100e- 003	0.0000	17.4869
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.2000e- 004	5.3000e- 004	6.0900e- 003	2.0000e- 005	1.6800e- 003	1.0000e- 005	1.6900e- 003	4.5000e- 004	1.0000e- 005	4.6000e- 004	0.0000	1.5281	1.5281	5.0000e- 005	0.0000	1.5293
Total	2.6500e- 003	0.0639	0.0209	2.0000e- 004	5.6200e- 003	2.0000e- 004	5.8200e- 003	1.5300e- 003	1.9000e- 004	1.7200e- 003	0.0000	18.9847	18.9847	1.2600e- 003	0.0000	19.0161

3.3 Site Preparation - 2021 Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust	•				0.1807	0.0000	0.1807	0.0993	0.0000	0.0993	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0389	0.4050	0.2115	3.8000e- 004		0.0204	0.0204		0.0188	0.0188	0.0000	33.4357	33.4357	0.0108	0.0000	33.7061
Total	0.0389	0.4050	0.2115	3.8000e- 004	0.1807	0.0204	0.2011	0.0993	0.0188	0.1181	0.0000	33.4357	33.4357	0.0108	0.0000	33.7061

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.3 Site Preparation - 2021 Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category		tonsiyr									MT/yr						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Worker	5.8000e- 004	4.3000e- 004	4.8700e- 003	1.0000e- 005	1.3400e- 003	1.0000e- 005	1.3500e- 003	3.6000e- 004	1.0000e- 005	3.7000e- 004	0.0000	1.2225	1.2225	4.0000e- 005	0.0000	1.2234	
Total	5.8000e- 004	4.3000e- 004	4.8700e- 003	1.0000e- 005	1.3400e- 003	1.0000e- 005	1.3500e- 003	3.6000e- 004	1.0000e- 005	3.7000e- 004	0.0000	1.2225	1.2225	4.0000e- 005	0.0000	1.2234	

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category		tons/yr									MT/yr						
Fugitive Dust					0.1807	0.0000	0.1807	0.0993	0.0000	0.0993	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Off-Road	0.0389	0.4050	0.2115	3.8000e- 004		0.0204	0.0204		0.0188	0.0188	0.0000	33.4357	33.4357	0.0108	0.0000	33.7060	
Total	0.0389	0.4050	0.2115	3.8000e- 004	0.1807	0.0204	0.2011	0.0993	0.0188	0.1181	0.0000	33.4357	33.4357	0.0108	0.0000	33.7060	

Page 14 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.3 Site Preparation - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	5.8000e- 004	4.3000e- 004	4.8700e- 003	1.0000e- 005	1.3400e- 003	1.0000e- 005	1.3500e- 003	3.6000e- 004	1.0000e- 005	3.7000e- 004	0.0000	1.2225	1.2225	4.0000e- 005	0.0000	1.2234
Total	5.8000e- 004	4.3000e- 004	4.8700e- 003	1.0000e- 005	1.3400e- 003	1.0000e- 005	1.3500e- 003	3.6000e- 004	1.0000e- 005	3.7000e- 004	0.0000	1.2225	1.2225	4.0000e- 005	0.0000	1.2234

3.4 Grading - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Fugitive Dust					0.1741	0.0000	0.1741	0.0693	0.0000	0.0693	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0796	0.8816	0.5867	1.1800e- 003		0.0377	0.0377		0.0347	0.0347	0.0000	103.5405	103.5405	0.0335	0.0000	104.3776
Total	0.0796	0.8816	0.5867	1.1800e- 003	0.1741	0.0377	0.2118	0.0693	0.0347	0.1040	0.0000	103.5405	103.5405	0.0335	0.0000	104.3776

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2021 Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.2200e- 003	9.0000e- 004	0.0103	3.0000e- 005	2.8300e- 003	2.0000e- 005	2.8600e- 003	7.5000e- 004	2.0000e- 005	7.8000e- 004	0.0000	2.5808	2.5808	8.0000e- 005	0.0000	2.5828
Total	1.2200e- 003	9.0000e- 004	0.0103	3.0000e- 005	2.8300e- 003	2.0000e- 005	2.8600e- 003	7.5000e- 004	2.0000e- 005	7.8000e- 004	0.0000	2.5808	2.5808	8.0000e- 005	0.0000	2.5828

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Fugitive Dust					0.1741	0.0000	0.1741	0.0693	0.0000	0.0693	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0796	0.8816	0.5867	1.1800e- 003		0.0377	0.0377		0.0347	0.0347	0.0000	103.5403	103.5403	0.0335	0.0000	104.3775
Total	0.0796	0.8816	0.5867	1.1800e- 003	0.1741	0.0377	0.2118	0.0693	0.0347	0.1040	0.0000	103.5403	103.5403	0.0335	0.0000	104.3775

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.2200e- 003	9.0000e- 004	0.0103	3.0000e- 005	2.8300e- 003	2.0000e- 005	2.8600e- 003	7.5000e- 004	2.0000e- 005	7.8000e- 004	0.0000	2.5808	2.5808	8.0000e- 005	0.0000	2.5828
Total	1.2200e- 003	9.0000e- 004	0.0103	3.0000e- 005	2.8300e- 003	2.0000e- 005	2.8600e- 003	7.5000e- 004	2.0000e- 005	7.8000e- 004	0.0000	2.5808	2.5808	8.0000e- 005	0.0000	2.5828

3.4 Grading - 2022 Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МП	√yr		
Fugitive Dust					0.0807	0.0000	0.0807	0.0180	0.0000	0.0180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0127	0.1360	0.1017	2.2000e- 004		5.7200e- 003	5.7200e- 003		5.2600e- 003	5.2600e- 003	0.0000	19.0871	19.0871	6.1700e- 003	0.0000	19.2414
Total	0.0127	0.1360	0.1017	2.2000e- 004	0.0807	5.7200e- 003	0.0865	0.0180	5.2600e- 003	0.0233	0.0000	19.0871	19.0871	6.1700e- 003	0.0000	19.2414

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2022 Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.1000e- 004	1.5000e- 004	1.7400e- 003	1.0000e- 005	5.2000e- 004	0.0000	5.3000e- 004	1.4000e- 004	0.0000	1.4000e- 004	0.0000	0.4587	0.4587	1.0000e- 005	0.0000	0.4590
Total	2.1000e- 004	1.5000e- 004	1.7400e- 003	1.0000e- 005	5.2000e- 004	0.0000	5.3000e- 004	1.4000e- 004	0.0000	1.4000e- 004	0.0000	0.4587	0.4587	1.0000e- 005	0.0000	0.4590

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МП	/yr		
Fugitive Dust					0.0807	0.0000	0.0807	0.0180	0.0000	0.0180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0127	0.1360	0.1017	2.2000e- 004		5.7200e- 003	5.7200e- 003		5.2600e- 003	5.2600e- 003	0.0000	19.0871	19.0871	6.1700e- 003	0.0000	19.2414
Total	0.0127	0.1360	0.1017	2.2000e- 004	0.0807	5.7200e- 003	0.0865	0.0180	5.2600e- 003	0.0233	0.0000	19.0871	19.0871	6.1700e- 003	0.0000	19.2414

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2022 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr	,						МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.1000e- 004	1.5000e- 004	1.7400e- 003	1.0000e- 005	5.2000e- 004	0.0000	5.3000e- 004	1.4000e- 004	0.0000	1.4000e- 004	0.0000	0.4587	0.4587	1.0000e- 005	0.0000	0.4590
Total	2.1000e- 004	1.5000e- 004	1.7400e- 003	1.0000e- 005	5.2000e- 004	0.0000	5.3000e- 004	1.4000e- 004	0.0000	1.4000e- 004	0.0000	0.4587	0.4587	1.0000e- 005	0.0000	0.4590

3.5 Building Construction - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr	u.	
Off-Road	0.2158	1.9754	2.0700	3.4100e- 003		0.1023	0.1023		0.0963	0.0963	0.0000	293.1324	293.1324	0.0702	0.0000	294.8881
Total	0.2158	1.9754	2.0700	3.4100e- 003		0.1023	0.1023		0.0963	0.0963	0.0000	293.1324	293.1324	0.0702	0.0000	294.8881

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2022 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0527	1.6961	0.4580	4.5500e- 003	0.1140	3.1800e- 003	0.1171	0.0329	3.0400e- 003	0.0359	0.0000	441.9835	441.9835	0.0264	0.0000	442.6435
Worker	0.3051	0.2164	2.5233	7.3500e- 003	0.7557	6.2300e- 003	0.7619	0.2007	5.7400e- 003	0.2065	0.0000	663.9936	663.9936	0.0187	0.0000	664.4604
Total	0.3578	1.9125	2.9812	0.0119	0.8696	9.4100e- 003	0.8790	0.2336	8.7800e- 003	0.2424	0.0000	1,105.977 1	1,105.977 1	0.0451	0.0000	1,107.103 9

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.2158	1.9754	2.0700	3.4100e- 003		0.1023	0.1023		0.0963	0.0963	0.0000	293.1321	293.1321	0.0702	0.0000	294.8877
Total	0.2158	1.9754	2.0700	3.4100e- 003		0.1023	0.1023		0.0963	0.0963	0.0000	293.1321	293.1321	0.0702	0.0000	294.8877

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2022 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	∏yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0527	1.6961	0.4580	4.5500e- 003	0.1140	3.1800e- 003	0.1171	0.0329	3.0400e- 003	0.0359	0.0000	441.9835	441.9835	0.0264	0.0000	442.6435
Worker	0.3051	0.2164	2.5233	7.3500e- 003	0.7557	6.2300e- 003	0.7619	0.2007	5.7400e- 003	0.2065	0.0000	663.9936	663.9936	0.0187	0.0000	664.4604
Total	0.3578	1.9125	2.9812	0.0119	0.8696	9.4100e- 003	0.8790	0.2336	8.7800e- 003	0.2424	0.0000	1,105.977 1	1,105.977 1	0.0451	0.0000	1,107.103 9

3.5 Building Construction - 2023 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr	,	
Off-Road	0.1942	1.7765	2.0061	3.3300e- 003		0.0864	0.0864		0.0813	0.0813	0.0000	286.2789	286.2789	0.0681	0.0000	287.9814
Total	0.1942	1.7765	2.0061	3.3300e- 003		0.0864	0.0864		0.0813	0.0813	0.0000	286.2789	286.2789	0.0681	0.0000	287.9814

Page 21 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2023 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0382	1.2511	0.4011	4.3000e- 003	0.1113	1.4600e- 003	0.1127	0.0321	1.4000e- 003	0.0335	0.0000	417.9930	417.9930	0.0228	0.0000	418.5624
Worker	0.2795	0.1910	2.2635	6.9100e- 003	0.7377	5.9100e- 003	0.7436	0.1960	5.4500e- 003	0.2014	0.0000	624.5363	624.5363	0.0164	0.0000	624.9466
Total	0.3177	1.4420	2.6646	0.0112	0.8490	7.3700e- 003	0.8564	0.2281	6.8500e- 003	0.2349	0.0000	1,042.529 4	1,042.529 4	0.0392	0.0000	1,043.509 0

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.1942	1.7765	2.0061	3.3300e- 003		0.0864	0.0864		0.0813	0.0813	0.0000	286.2785	286.2785	0.0681	0.0000	287.9811
Total	0.1942	1.7765	2.0061	3.3300e- 003		0.0864	0.0864		0.0813	0.0813	0.0000	286.2785	286.2785	0.0681	0.0000	287.9811

Page 22 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2023 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0382	1.2511	0.4011	4.3000e- 003	0.1113	1.4600e- 003	0.1127	0.0321	1.4000e- 003	0.0335	0.0000	417.9930	417.9930	0.0228	0.0000	418.5624
Worker	0.2795	0.1910	2.2635	6.9100e- 003	0.7377	5.9100e- 003	0.7436	0.1960	5.4500e- 003	0.2014	0.0000	624.5363	624.5363	0.0164	0.0000	624.9466
Total	0.3177	1.4420	2.6646	0.0112	0.8490	7.3700e- 003	0.8564	0.2281	6.8500e- 003	0.2349	0.0000	1,042.529 4	1,042.529 4	0.0392	0.0000	1,043.509 0

3.6 Paving - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	T/yr		
Off-Road	6.7100e- 003	0.0663	0.0948	1.5000e- 004		3.3200e- 003	3.3200e- 003		3.0500e- 003	3.0500e- 003	0.0000	13.0175	13.0175	4.2100e- 003	0.0000	13.1227
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.7100e- 003	0.0663	0.0948	1.5000e- 004		3.3200e- 003	3.3200e- 003		3.0500e- 003	3.0500e- 003	0.0000	13.0175	13.0175	4.2100e- 003	0.0000	13.1227

Page 23 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2023 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.8000e- 004	1.9000e- 004	2.2300e- 003	1.0000e- 005	7.3000e- 004	1.0000e- 005	7.3000e- 004	1.9000e- 004	1.0000e- 005	2.0000e- 004	0.0000	0.6156	0.6156	2.0000e- 005	0.0000	0.6160
Total	2.8000e- 004	1.9000e- 004	2.2300e- 003	1.0000e- 005	7.3000e- 004	1.0000e- 005	7.3000e- 004	1.9000e- 004	1.0000e- 005	2.0000e- 004	0.0000	0.6156	0.6156	2.0000e- 005	0.0000	0.6160

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	T/yr		
Off-Road	6.7100e- 003	0.0663	0.0948	1.5000e- 004		3.3200e- 003	3.3200e- 003		3.0500e- 003	3.0500e- 003	0.0000	13.0175	13.0175	4.2100e- 003	0.0000	13.1227
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.7100e- 003	0.0663	0.0948	1.5000e- 004		3.3200e- 003	3.3200e- 003		3.0500e- 003	3.0500e- 003	0.0000	13.0175	13.0175	4.2100e- 003	0.0000	13.1227

Date: 1/12/2021 2:26 PM

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 44

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2023 Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.8000e- 004	1.9000e- 004	2.2300e- 003	1.0000e- 005	7.3000e- 004	1.0000e- 005	7.3000e- 004	1.9000e- 004	1.0000e- 005	2.0000e- 004	0.0000	0.6156	0.6156	2.0000e- 005	0.0000	0.6160
Total	2.8000e- 004	1.9000e- 004	2.2300e- 003	1.0000e- 005	7.3000e- 004	1.0000e- 005	7.3000e- 004	1.9000e- 004	1.0000e- 005	2.0000e- 004	0.0000	0.6156	0.6156	2.0000e- 005	0.0000	0.6160

3.6 Paving - 2024 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МП	Γ/yr		
Off-Road	0.0109	0.1048	0.1609	2.5000e- 004		5.1500e- 003	5.1500e- 003		4.7400e- 003	4.7400e- 003	0.0000	22.0292	22.0292	7.1200e- 003	0.0000	22.2073
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0109	0.1048	0.1609	2.5000e- 004		5.1500e- 003	5.1500e- 003		4.7400e- 003	4.7400e- 003	0.0000	22.0292	22.0292	7.1200e- 003	0.0000	22.2073

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2024 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	4.4000e- 004	2.9000e- 004	3.5100e- 003	1.0000e- 005	1.2300e- 003	1.0000e- 005	1.2400e- 003	3.3000e- 004	1.0000e- 005	3.4000e- 004	0.0000	1.0094	1.0094	3.0000e- 005	0.0000	1.0100
Total	4.4000e- 004	2.9000e- 004	3.5100e- 003	1.0000e- 005	1.2300e- 003	1.0000e- 005	1.2400e- 003	3.3000e- 004	1.0000e- 005	3.4000e- 004	0.0000	1.0094	1.0094	3.0000e- 005	0.0000	1.0100

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МП	√yr		
Off-Road	0.0109	0.1048	0.1609	2.5000e- 004		5.1500e- 003	5.1500e- 003		4.7400e- 003	4.7400e- 003	0.0000	22.0292	22.0292	7.1200e- 003	0.0000	22.2073
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0109	0.1048	0.1609	2.5000e- 004		5.1500e- 003	5.1500e- 003		4.7400e- 003	4.7400e- 003	0.0000	22.0292	22.0292	7.1200e- 003	0.0000	22.2073

Page 26 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2024 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	4.4000e- 004	2.9000e- 004	3.5100e- 003	1.0000e- 005	1.2300e- 003	1.0000e- 005	1.2400e- 003	3.3000e- 004	1.0000e- 005	3.4000e- 004	0.0000	1.0094	1.0094	3.0000e- 005	0.0000	1.0100
Total	4.4000e- 004	2.9000e- 004	3.5100e- 003	1.0000e- 005	1.2300e- 003	1.0000e- 005	1.2400e- 003	3.3000e- 004	1.0000e- 005	3.4000e- 004	0.0000	1.0094	1.0094	3.0000e- 005	0.0000	1.0100

3.7 Architectural Coating - 2024 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Archit. Coating	4.1372					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	3.1600e- 003	0.0213	0.0317	5.0000e- 005		1.0700e- 003	1.0700e- 003		1.0700e- 003	1.0700e- 003	0.0000	4.4682	4.4682	2.5000e- 004	0.0000	4.4745
Total	4.1404	0.0213	0.0317	5.0000e- 005		1.0700e- 003	1.0700e- 003		1.0700e- 003	1.0700e- 003	0.0000	4.4682	4.4682	2.5000e- 004	0.0000	4.4745

Page 27 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.7 Architectural Coating - 2024 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.4800e- 003	4.9300e- 003	0.0596	1.9000e- 004	0.0209	1.6000e- 004	0.0211	5.5500e- 003	1.5000e- 004	5.7000e- 003	0.0000	17.1287	17.1287	4.3000e- 004	0.0000	17.1394
Total	7.4800e- 003	4.9300e- 003	0.0596	1.9000e- 004	0.0209	1.6000e- 004	0.0211	5.5500e- 003	1.5000e- 004	5.7000e- 003	0.0000	17.1287	17.1287	4.3000e- 004	0.0000	17.1394

Mitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Archit. Coating	4.1372					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	3.1600e- 003	0.0213	0.0317	5.0000e- 005		1.0700e- 003	1.0700e- 003		1.0700e- 003	1.0700e- 003	0.0000	4.4682	4.4682	2.5000e- 004	0.0000	4.4745
Total	4.1404	0.0213	0.0317	5.0000e- 005		1.0700e- 003	1.0700e- 003		1.0700e- 003	1.0700e- 003	0.0000	4.4682	4.4682	2.5000e- 004	0.0000	4.4745

CalEEMod Version: CalEEMod.2016.3.2 Page 28 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.7 Architectural Coating - 2024 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.4800e- 003	4.9300e- 003	0.0596	1.9000e- 004	0.0209	1.6000e- 004	0.0211	5.5500e- 003	1.5000e- 004	5.7000e- 003	0.0000	17.1287	17.1287	4.3000e- 004	0.0000	17.1394
Total	7.4800e- 003	4.9300e- 003	0.0596	1.9000e- 004	0.0209	1.6000e- 004	0.0211	5.5500e- 003	1.5000e- 004	5.7000e- 003	0.0000	17.1287	17.1287	4.3000e- 004	0.0000	17.1394

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 29 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	1.5857	7.9962	19.1834	0.0821	7.7979	0.0580	7.8559	2.0895	0.0539	2.1434	0.0000	7,620.498 6	7,620.498 6	0.3407	0.0000	7,629.016 2
Unmitigated	1.5857	7.9962	19.1834	0.0821	7.7979	0.0580	7.8559	2.0895	0.0539	2.1434	0.0000	7,620.498 6	7,620.498 6	0.3407	0.0000	7,629.016 2

4.2 Trip Summary Information

	Ave	rage Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	145.75	154.25	154.00	506,227	506,227
Apartments Mid Rise	4,026.75	3,773.25	4075.50	13,660,065	13,660,065
General Office Building	288.45	62.55	31.05	706,812	706,812
High Turnover (Sit Down Restaurant)	2,368.80	2,873.52	2817.72	3,413,937	3,413,937
Hotel	192.00	187.50	160.00	445,703	445,703
Quality Restaurant	501.12	511.92	461.20	707,488	707,488
Regional Shopping Center	528.08	601.44	357.84	1,112,221	1,112,221
Total	8,050.95	8,164.43	8,057.31	20,552,452	20,552,452

4.3 Trip Type Information

Page 30 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
High Turnover (Sit Down	16.60	8.40	6.90	8.50	72.50	19.00	37	20	43
Hotel	16.60	8.40	6.90	19.40	61.60	19.00	58	38	4
Quality Restaurant	16.60	8.40	6.90	12.00	69.00	19.00	38	18	44
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Low Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Apartments Mid Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
General Office Building	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
High Turnover (Sit Down Restaurant)	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Hotel	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Quality Restaurant	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Regional Shopping Center	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Page 31 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	2,512.646 5	2,512.646 5	0.1037	0.0215	2,521.635 6
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	2,512.646 5	2,512.646 5	0.1037	0.0215	2,521.635 6
NaturalGas Mitigated	0,1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	1,383.426 7	1,383.426 7	0.0265	0.0254	1,391.647 8
NaturalGas Unmitigated	0,1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	1,383.426 7	1,383.426 7	0.0265	0.0254	1,391.647 8

 CalEEMod Version: CalEEMod.2016.3.2
 Page 32 of 44
 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	ıs/yr							МТ	/yr		
Apartments Low Rise	408494	2.2000e- 003	0.0188	8.0100e- 003	1.2000e- 004		1.5200e- 003	1.5200e- 003		1.5200e- 003	1.5200e- 003	0.0000	21.7988	21.7988	4.2000e- 004	4.0000e- 004	21.9284
Apartments Mid Rise	1.30613e +007	0.0704	0.6018	0.2561	3.8400e- 003		0.0487	0.0487		0.0487	0.0487	0.0000	696.9989	696.9989	0.0134	0.0128	701.1408
General Office Building	468450	2.5300e- 003	0.0230	0.0193	1.4000e- 004		1.7500e- 003	1.7500e- 003		1.7500e- 003	1.7500e- 003	0.0000	24.9983	24.9983	4.8000e- 004	4.6000e- 004	25.1468
ligh Turnover (Sit Down Restaurant)		0.0448	0.4072	0.3421	2.4400e- 003		0.0310	0.0310		0.0310	0.0310	0.0000	443.3124	443.3124	8.5000e- 003	8.1300e- 003	445.9468
Hotel	1.74095e +006	9.3900e- 003	0.0853	0.0717	5.1000e- 004		6.4900e- 003	6.4900e- 003		6.4900e- 003	6.4900e- 003	0.0000	92.9036	92.9036	1.7800e- 003	1.7000e- 003	93.4557
Quality Restaurant	1.84608e +006	9.9500e- 003	0.0905	0.0760	5.4000e- 004		6.8800e- 003	6.8800e- 003		6.8800e- 003	6.8800e- 003	0.0000	98.5139	98.5139	1.8900e- 003	1.8100e- 003	99.0993
Regional Shopping Center		5.0000e- 004	4.5000e- 003	3.7800e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	4.9009	4.9009	9.0000e- 005	9.0000e- 005	4.9301
Total		0.1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	1,383.426 8	1,383.426 8	0.0265	0.0254	1,391.647 8

CalEEMod Version: CalEEMod.2016.3.2 Page 33 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

5.2 Energy by Land Use - NaturalGas <u>Mitigated</u>

	NaturalGa s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	ıs/yr							МТ	T/yr		
Apartments Low Rise	408494	2.2000e- 003	0.0188	8.0100e- 003	1.2000e- 004		1.5200e- 003	1.5200e- 003		1.5200e- 003	1.5200e- 003	0.0000	21.7988	21.7988	4.2000e- 004	4.0000e- 004	21.9284
Apartments Mid Rise	1.30613e +007	0.0704	0.6018	0.2561	3.8400e- 003		0.0487	0.0487		0.0487	0.0487	0.0000	696.9989	696.9989	0.0134	0.0128	701.1408
General Office Building	468450	2.5300e- 003	0.0230	0.0193	1.4000e- 004		1.7500e- 003	1.7500e- 003		1.7500e- 003	1.7500e- 003	0.0000	24.9983	24.9983	4.8000e- 004	4.6000e- 004	25.1468
ligh Turnover (Sit Down Restaurant)		0.0448	0.4072	0.3421	2.4400e- 003		0.0310	0.0310		0.0310	0.0310	0.0000	443.3124	443.3124	8.5000e- 003	8.1300e- 003	445.9468
Hotel	1.74095e +006	9.3900e- 003	0.0853	0.0717	5.1000e- 004		6.4900e- 003	6.4900e- 003		6.4900e- 003	6.4900e- 003	0.0000	92.9036	92.9036	1.7800e- 003	1.7000e- 003	93.4557
Quality Restaurant	1.84608e +006	9.9500e- 003	0.0905	0.0760	5.4000e- 004		6.8800e- 003	6.8800e- 003		6.8800e- 003	6.8800e- 003	0.0000	98.5139	98.5139	1.8900e- 003	1.8100e- 003	99.0993
Regional Shopping Center	91840	5.0000e- 004	4.5000e- 003	3.7800e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	4.9009	4.9009	9.0000e- 005	9.0000e- 005	4.9301
Total		0.1398	1.2312	0.7770	7.6200e- 003		0.0966	0.0966		0.0966	0.0966	0.0000	1,383.426 8	1,383.426 8	0.0265	0.0254	1,391.647 8

Page 34 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	T/yr	
Apartments Low Rise	106010	33.7770	1.3900e- 003	2.9000e- 004	33.8978
Apartments Mid Rise	3.94697e +006	1,257.587 9	0.0519	0.0107	1,262.086 9
General Office Building	584550	186.2502	7.6900e- 003	1.5900e- 003	186.9165
ligh Turnover (Sit Down Restaurant)		506.3022	0.0209	4.3200e- 003	508.1135
Hotel	550308	175.3399	7.2400e- 003	1.5000e- 003	175.9672
Quality Restaurant	353120	112.5116	4.6500e- 003	9.6000e- 004	112.9141
Regional Shopping Center	756000	240.8778	9.9400e- 003	2.0600e- 003	241.7395
Total		2,512.646 5	0.1037	0.0215	2,521.635 6

Page 35 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

5.3 Energy by Land Use - Electricity Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	∏yr	
Apartments Low Rise	106010	33.7770	1.3900e- 003	2.9000e- 004	33.8978
Apartments Mid Rise	3.94697e +006	1,257.587 9	0.0519	0.0107	1,262.086 9
General Office Building	584550	186.2502	7.6900e- 003	1.5900e- 003	186.9165
High Turnover (Sit Down Restaurant)		506.3022	0.0209	4.3200e- 003	508.1135
Hotel	550308	175.3399	7.2400e- 003	1.5000e- 003	175.9672
Quality Restaurant	353120	112.5116	4.6500e- 003	9.6000e- 004	112.9141
Regional Shopping Center	756000	240.8778	9.9400e- 003	2.0600e- 003	241.7395
Total		2,512.646 5	0.1037	0.0215	2,521.635 6

6.0 Area Detail

6.1 Mitigation Measures Area

Page 36 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МП	/yr		
Mitigated	5.1437	0.2950	10.3804	1.6700e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.5835
Unmitigated	5.1437	0.2950	10.3804	1.6700e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.5835

6.2 Area by SubCategory Unmitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МП	/yr		
Coating	0.4137					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4.3998					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	0.0206	0.1763	0.0750	1.1200e- 003		0.0143	0.0143		0.0143	0.0143	0.0000	204.1166	204.1166	3.9100e- 003	3.7400e- 003	205.3295
Landscaping	0.3096	0.1187	10.3054	5.4000e- 004		0.0572	0.0572		0.0572	0.0572	0.0000	16.8504	16.8504	0.0161	0.0000	17.2540
Total	5.1437	0.2950	10.3804	1.6600e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.5835

CalEEMod Version: CalEEMod.2016.3.2 Page 37 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

6.2 Area by SubCategory Mitigated

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МП	/yr		
Architectural Coating	0.4137					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	4.3998					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	0.0206	0.1763	0.0750	1.1200e- 003		0.0143	0.0143		0.0143	0.0143	0.0000	204.1166	204.1166	3.9100e- 003	3.7400e- 003	205.3295
Landscaping	0.3096	0.1187	10.3054	5.4000e- 004		0.0572	0.0572		0.0572	0.0572	0.0000	16.8504	16.8504	0.0161	0.0000	17.2540
Total	5.1437	0.2950	10.3804	1.6600e- 003		0.0714	0.0714		0.0714	0.0714	0.0000	220.9670	220.9670	0.0201	3.7400e- 003	222.5835

7.0 Water Detail

^{7.1} Mitigation Measures Water

CalEEMod Version: CalEEMod.2016.3.2 Page 38 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

	Total CO2	CH4	N2O	CO2e
Category		MT	Г/уг	
Mitigated	585.8052	3.0183	0.0755	683.7567
Unmitigated	585.8052	3.0183	0.0755	683.7567

CalEEMod Version: CalEEMod.2016.3.2 Page 39 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

7.2 Water by Land Use Unmitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		М	T/yr	
Apartments Low Rise	1.62885 / 1.02688	10.9095	0.0535	1.3400e- 003	12.6471
Apartments Mid Rise	63.5252 / 40.0485	425.4719	2.0867	0.0523	493.2363
General Office Building	7.99802 / 4.90201	53.0719	0.2627	6.5900e- 003	61.6019
High Turnover (Sit Down Restaurant)		51.2702	0.3580	8.8200e- 003	62.8482
Hotel	1.26834 / 0.140927	6.1633	0.0416	1.0300e- 003	7.5079
Quality Restaurant	2.42827 / 0.154996	11.3934	0.0796	1.9600e- 003	13.9663
Regional Shopping Center	4.14806 / 2.54236	27.5250	0.1363	3.4200e- 003	31.9490
Total		585.8052	3.0183	0.0755	683.7567

CalEEMod Version: CalEEMod.2016.3.2 Page 40 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

7.2 Water by Land Use Mitigated

Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Mgal		М	T/yr	
1.62885 / 1.02688	10.9095	0.0535	1.3400e- 003	12.6471
63.5252 / 40.0485	425.4719	2.0867	0.0523	493.2363
7.99802 / 4.90201	53.0719	0.2627	6.5900e- 003	61.6019
		0.3580	8.8200e- 003	62.8482
1.26834 / 0.140927	6.1633	0.0416	1.0300e- 003	7.5079
2.42827 / 0.154996	11.3934	0.0796	1.9600e- 003	13.9663
4.14806 / 2.54236	27.5250	0.1363	3.4200e- 003	31.9490
	585.8052	3.0183	0.0755	683.7567
	door Use Mgal 1.62885 / 1.02688 63.5252 / 40.0485 4.90201 10.9272 / 0.697482 1.26834 / 0.140927 2.42827 / 0.154996 4.14806 / 4.14806 / 4.14806 /	Mgal 1.62865 10.9095 1.02688 425.4719 4.00465 43.0719 4.90201 53.0719 4.90202 53.0719 10.92722 51.2702 0.697482 6.1633 0.140927 11.3934 0.154996 11.3934 4.14806 27.5250	Mgal	Mgal

8.0 Waste Detail

8.1 Mitigation Measures Waste

CalEEMod Version: CalEEMod.2016.3.2 Page 41 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Category/Year

	Total CO2	CH4	N2O	CO2e
		МТ	/уг	
Mitigated	207.8079	12.2811	0.0000	514.8354
Unmitigated	207.8079	12.2811	0.0000	514.8354

 CalEEMod Version: CalEEMod.2016.3.2
 Page 42 of 44
 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

8.2 Waste by Land Use Unmitigated

Waste Disposed	Total CO2	CH4	N2O	CO2e
tons		МТ	/yr	
11.5	2.3344	0.1380	0.0000	5.7834
448.5	91.0415	5.3804	0.0000	225.5513
41.85	8.4952	0.5021	0.0000	21.0464
428.4	86.9613	5.1393	0.0000	215.4430
27.38	5.5579	0.3285	0.0000	13.7694
7.3	1.4818	0.0876	0.0000	3.6712
58.8	11.9359	0.7054	0.0000	29.5706
	207.8079	12.2811	0.0000	514.8354
	Disposed tons 11.5 448.5 41.85 428.4 27.38 7.3	11.5 2.3344 448.5 91.0415 41.85 8.4952 428.4 86.9613 27.38 5.5579 7.3 1.4818 58.8 11.9359	Disposed tons MT 11.5 2.3344 0.1380 448.5 91.0415 5.3804 41.85 8.4952 0.5021 428.4 86.9613 5.1393 27.38 5.5579 0.3285 7.3 1.4818 0.0876 58.8 11.9359 0.7054	Disposed MT/yr 11.5 2.3344 0.1380 0.0000 448.5 91.0415 5.3804 0.0000 41.85 8.4952 0.5021 0.0000 428.4 86.9613 5.1393 0.0000 27.38 5.5579 0.3285 0.0000 7.3 1.4818 0.0876 0.0000 58.8 11.9359 0.7054 0.0000

Page 43 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

8.2 Waste by Land Use Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МП	/yr	
Apartments Low Rise	11.5	2.3344	0.1380	0.0000	5.7834
Apartments Mid Rise	448.5	91.0415	5.3804	0.0000	225.5513
General Office Building	41.85	8.4952	0.5021	0.0000	21.0464
High Turnover (Sit Down Restaurant)	428.4	86.9613	5.1393	0.0000	215.4430
Hotel	27.38	5.5579	0.3285	0.0000	13.7694
Quality Restaurant	7.3	1.4818	0.0876	0.0000	3.6712
Regional Shopping Center	58.8	11.9359	0.7054	0.0000	29.5706
Total		207.8079	12.2811	0.0000	514.8354

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

CalEEMod Version: CalEEMod.2016.3.2 Page 44 of 44 Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Boilers

Equipment Type Number Heat Input/Day Heat Input/Year Boiler Rating Fuel Type

User Defined Equipment

Equipment Type Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Village South Specific Plan (Proposed) Los Angeles-South Coast County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	45.00	1000sqft	1.03	45,000.00	0
High Turnover (Sit Down Restaurant)	36.00	1000sqft	0.83	36,000.00	0
Hotel	50.00	Room	1.67	72,600.00	0
Quality Restaurant	8.00	1000sqft	0.18	8,000.00	0
Apartments Low Rise	25.00	Dwelling Unit	1.56	25,000.00	72
Apartments Mid Rise	975.00	Dwelling Unit	25.66	975,000.00	2789
Regional Shopping Center	56.00	1000sqft	1.29	56,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	9			Operational Year	2028
Utility Company	Southern Californi	ia Edison			
CO2 Intensity (lb/MWhr)	702.44	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (lb/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

 $\label{lem:construction} \textbf{Construction Phase - See SWAPE comment regarding individual construction phase lengths.}$

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use -

 $Construction\ Off-road\ Equipment\ Mitigation\ -\ See\ SWAPE\ comment\ on\ construction-related\ mitigation.$

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

Trips and VMT - Local hire provision

Table Name	Column Name	Default Value	New Value
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	NumberWood	1.25	0.00
tblFireplaces	NumberWood	48.75	0.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblVehicleTrips	ST_TR	7.16	6.17
tblVehicleTrips	ST_TR	6.39	3.87
tblVehicleTrips	ST_TR	2.46	1.39
tblVehicleTrips	ST_TR	158.37	79.82

 CalEEMod Version: CalEEMod.2016.3.2
 Page 3 of 35
 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

tblVehicleTrips	ST_TR	8.19	3.75
tblVehicleTrips	ST_TR	94.36	63.99
tblVehicleTrips	ST_TR	49.97	10.74
tblVehicleTrips	SU_TR	6.07	6.16
tblVehicleTrips	SU_TR	5.86	4.18
tblVehicleTrips	SU_TR	1.05	0.69
tblVehicleTrips	SU_TR	131.84	78.27
tblVehicleTrips	SU_TR	5.95	3.20
tblVehicleTrips	SU_TR	72.16	57.65
tblVehicleTrips	SU_TR	25.24	6.39
tblVehicleTrips	WD_TR	6.59	5.83
tblVehicleTrips	WD_TR	6.65	4.13
tblVehicleTrips	WD_TR	11.03	6.41
tblVehicleTrips	WD_TR	127.15	65.80
tblVehicleTrips	WD_TR	8.17	3.84
tblVehicleTrips	WD_TR	89.95	62.64
tblVehicleTrips	WD_TR	42.70	9.43
tblWoodstoves	NumberCatalytic	1.25	0.00
tblWoodstoves	NumberCatalytic	48.75	0.00
tblWoodstoves	NumberNoncatalytic	1.25	0.00
tblWoodstoves	NumberNoncatalytic	48.75	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00

2.0 Emissions Summary

 CalEEMod Version: CalEEMod.2016.3.2
 Page 4 of 35
 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

2.1 Overall Construction (Maximum Daily Emission) <u>Unmitigated Construction</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Year	Ib/day									lb/day							
2021	4.2561	46.4415	31.4494	0.0636	18.2032	2.0456	20.2488	9.9670	1.8820	11.8490	0.0000	6,163.416 6	6,163.416 6	1.9475	0.0000	6,212.103	
2022	4.5441	38.8811	40.8776	0.1240	8.8255	1.6361	10.4616	3.6369	1.5052	5.1421	0.0000	12,493.44 03	12,493.44 03	1.9485	0.0000	12,518.5 07	
2023	4.1534	25.7658	38.7457	0.1206	7.0088	0.7592	7.7679	1.8799	0.7136	2.5935	0.0000	12,150.48 90	12,150.48 90	0.9589	0.0000	12,174.4 15	
2024	237.0219	9.5478	14.9642	0.0239	1.2171	0.4694	1.2875	0.3229	0.4319	0.4621	0.0000	2,313.180 8	2,313.180 8	0.7166	0.0000	2,331.09 6	
Maximum	237.0219	46.4415	40.8776	0.1240	18.2032	2.0456	20.2488	9.9670	1.8820	11.8490	0.0000	12,493.44 03	12,493.44 03	1.9485	0.0000	12,518.57 07	

 CalEEMod Version: CalEEMod.2016.3.2
 Page 5 of 35
 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

2.1 Overall Construction (Maximum Daily Emission) Mitigated Construction

Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e			
Maximum	237.0219	46.4415	40.8776	0.1240	18.2032	2.0456	20.2488	9.9670	1.8820	11.8490	0.0000	12,493.44 03	12,493.44 03	1.9485	0.0000	12,518 07			
2024	237.0219	9.5478	14.9642	0.0239	1.2171	0.4694	1.2875	0.3229	0.4319	0.4621	0.0000	2,313.180 8	2,313.180 8	0.7166	0.0000	2,331. 5			
2023	4.1534	25.7658	38.7457	0.1206	7.0088	0.7592	7.7679	1.8799	0.7136	2.5935	0.0000	12,150.48 90	12,150.48 90	0.9589	0.0000	12,174 15			
2022	4.5441	38.8811	40.8776	0.1240	8.8255	1.6361	10.4616	3.6369	1.5052	5.1421	0.0000	12,493.44 03	12,493.44 03	1.9485	0.0000	12,518 07			
2021	4.2561	46.4415	31.4494	0.0636	18.2032	2.0456	20.2488	9.9670	1.8820	11.8490	0.0000	6,163.416 6	6,163.416 6	1.9475	0.0000	6,212.			
Year	ar Ibiday										lb/	day							
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2			

 CalEEMod Version: CalEEMod.2016.3.2
 Page 6 of 35
 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Area	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92
Energy	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7
Mobile	9.8489	45.4304	114.8495	0.4917	45.9592	0.3360	46.2951	12.2950	0.3119	12.6070		50,306.60 34	50,306.60 34	2.1807		50,361.12 08
Total	41.1168	67.2262	207.5497	0.6278	45.9592	2.4626	48.4217	12.2950	2.4385	14.7336	0.0000	76,811.18 16	76,811.18 16	2.8282	0.4832	77,025.87 86

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/i	day							lb/c	iay		
Area	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92
Energy	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.63I 7
Mobile	9.8489	45.4304	114.8495	0.4917	45.9592	0.3360	46.2951	12.2950	0.3119	12.6070		50,306.60 34	50,306.60 34	2.1807		50,361.12 08
Total	41.1168	67.2262	207.5497	0.6278	45.9592	2.4626	48.4217	12.2950	2.4385	14.7336	0.0000	76,811.18 16	76,811.18 16	2.8282	0.4832	77,025.87 86

Page 7 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	9/1/2021	10/12/2021	5	30	
2	Site Preparation	Site Preparation	10/13/2021	11/9/2021	5	20	
3	Grading	Grading	11/10/2021	1/11/2022	5	45	
4	Building Construction	Building Construction	1/12/2022	12/12/2023	5	500	
5	Paving	Paving	12/13/2023	1/30/2024	5	35	
6	Architectural Coating	Architectural Coating	1/31/2024	3/19/2024	5	35	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Page 8 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Excavators	3	8.00	158	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Page 9 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	0.00	458.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	7	18.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	801.00	143.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	160.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2021

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust					3.3074	0.0000	3.3074	0.5008	0.0000	0.5008			0.0000			0.0000
Off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411	İ	3,747.944 9	3,747.944 9	1.0549		3,774.317 4
Total	3.1651	31.4407	21.5650	0.0388	3.3074	1.5513	4.8588	0.5008	1.4411	1.9419	İ	3,747.944 9	3,747.944 9	1.0549		3,774.317 4

CalEEMod Version: CalEEMod.2016.3.2 Page 10 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.2 Demolition - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.1273	4.0952	0.9602	0.0119	0.2669	0.0126	0.2795	0.0732	0.0120	0.0852		1,292.241 3	1,292.241 3	0.0877		1,294.433 7
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0487	0.0313	0.4282	1.1800e- 003	0.1141	9.5000e- 004	0.1151	0.0303	8.8000e- 004	0.0311		117.2799	117.2799	3.5200e- 003		117.3678
Total	0.1760	4.1265	1.3884	0.0131	0.3810	0.0135	0.3946	0.1034	0.0129	0.1163		1,409.521 2	1,409.521 2	0.0912		1,411.801 5

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					3.3074	0.0000	3.3074	0.5008	0.0000	0.5008			0.0000			0.0000
Off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411	0.0000	3,747.944 9	3,747.944 9	1.0549		3,774.317 4
Total	3.1651	31.4407	21.5650	0.0388	3.3074	1.5513	4.8588	0.5008	1.4411	1.9419	0.0000	3,747.944 9	3,747.944 9	1.0549		3,774.317 4

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.2 Demolition - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.1273	4.0952	0.9602	0.0119	0.2669	0.0126	0.2795	0.0732	0.0120	0.0852		1,292.241 3	1,292.241 3	0.0877		1,294.433 7
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0487	0.0313	0.4282	1.1800e- 003	0.1141	9.5000e- 004	0.1151	0.0303	8.8000e- 004	0.0311		117.2799	117.2799	3.5200e- 003		117.3678
Total	0.1760	4.1265	1.3884	0.0131	0.3810	0.0135	0.3946	0.1034	0.0129	0.1163		1,409.521 2	1,409.521 2	0.0912		1,411.801 5

3.3 Site Preparation - 2021 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust					18.0663	0.0000	18.0663	9.9307	0.0000	9.9307			0.0000			0.0000
Off-Road	3.8882	40.4971	21.1543	0.0380		2.0445	2.0445		1.8809	1.8809	ļ	3,685.656 9	3,685.656 9	1.1920		3,715.457 3
Total	3.8882	40.4971	21.1543	0.0380	18.0663	2.0445	20.1107	9.9307	1.8809	11.8116		3,685.656 9	3,685.656 9	1.1920		3,715.457 3

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.3 Site Preparation - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			9		lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0584	0.0375	0.5139	1.4100e- 003	0.1369	1.1400e- 003	0.1381	0.0363	1.0500e- 003	0.0374	1	140.7359	140.7359	4.2200e- 003		140.8414
Total	0.0584	0.0375	0.5139	1.4100e- 003	0.1369	1.1400e- 003	0.1381	0.0363	1.0500e- 003	0.0374		140.7359	140.7359	4.2200e- 003		140.8414

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day	v.	
Fugitive Dust					18.0663	0.0000	18.0663	9.9307	0.0000	9.9307			0.0000			0.0000
Off-Road	3.8882	40.4971	21.1543	0.0380		2.0445	2.0445		1.8809	1.8809	0.0000	3,685.656 9	3,685.656 9	1.1920		3,715.457 3
Total	3.8882	40.4971	21.1543	0.0380	18.0663	2.0445	20.1107	9.9307	1.8809	11.8116	0.0000	3,685.656 9	3,685.656 9	1.1920		3,715.457 3

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.3 Site Preparation - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0584	0.0375	0.5139	1.4100e- 003	0.1369	1.1400e- 003	0.1381	0.0363	1.0500e- 003	0.0374		140.7359	140.7359	4.2200e- 003		140.8414
Total	0.0584	0.0375	0.5139	1.4100e- 003	0.1369	1.1400e- 003	0.1381	0.0363	1.0500e- 003	0.0374		140.7359	140.7359	4.2200e- 003		140.8414

3.4 Grading - 2021 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust	-				8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	4.1912	46.3998	30.8785	0.0620		1.9853	1.9853		1.8265	1.8265	İ	6,007.043 4	6,007.043 4	1.9428		6,055.613 4
Total	4.1912	46.3998	30.8785	0.0620	8.6733	1.9853	10.6587	3.5965	1.8265	5.4230		6,007.043 4	6,007.043 4	1.9428		6,055.613 4

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0649	0.0417	0.5710	1.5700e- 003	0.1521	1.2700e- 003	0.1534	0.0404	1.1700e- 003	0.0415		156.3732	156.3732	4.6900e- 003		156.4904
Total	0.0649	0.0417	0.5710	1.5700e- 003	0.1521	1.2700e- 003	0.1534	0.0404	1.1700e- 003	0.0415		156.3732	156.3732	4.6900e- 003		156.4904

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965		į	0.0000			0.0000
Off-Road	4.1912	46.3998	30.8785	0.0620		1.9853	1.9853		1.8265	1.8265	0.0000	6,007.043 4	6,007.043 4	1.9428		6,055.613 4
Total	4.1912	46.3998	30.8785	0.0620	8.6733	1.9853	10.6587	3.5965	1.8265	5.4230	0.0000	6,007.043 4	6,007.043 4	1.9428		6,055.613 4

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0649	0.0417	0.5710	1.5700e- 003	0.1521	1.2700e- 003	0.1534	0.0404	1.1700e- 003	0.0415		156.3732	156.3732	4.6900e- 003		156.4904
Total	0.0649	0.0417	0.5710	1.5700e- 003	0.1521	1.2700e- 003	0.1534	0.0404	1.1700e- 003	0.0415		156.3732	156.3732	4.6900e- 003		156.4904

3.4 Grading - 2022 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	3.6248	38.8435	29.0415	0.0621		1.6349	1.6349		1.5041	1.5041	İ	6,011.410 5	6,011.410 5	1.9442		6,060.015
Total	3.6248	38.8435	29.0415	0.0621	8.6733	1.6349	10.3082	3.5965	1.5041	5.1006		6,011.410 5	6,011.410 5	1.9442		6,060.015

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2022 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0607	0.0376	0.5263	1.5100e- 003	0.1521	1.2300e- 003	0.1534	0.0404	1.1300e- 003	0.0415		150.8754	150.8754	4.2400e- 003		150.9813
Total	0.0607	0.0376	0.5263	1.5100e- 003	0.1521	1.2300e- 003	0.1534	0.0404	1.1300e- 003	0.0415		150.8754	150.8754	4.2400e- 003		150.9813

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	3.6248	38.8435	29.0415	0.0621		1.6349	1.6349		1.5041	1.5041	0.0000	6,011.410 5	6,011.410 5	1.9442		6,060.015 8
Total	3.6248	38.8435	29.0415	0.0621	8.6733	1.6349	10.3082	3.5965	1.5041	5.1006	0.0000	6,011.410 5	6,011.410 5	1.9442		6,060.015 8

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2022 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			9		lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0607	0.0376	0.5263	1.5100e- 003	0.1521	1.2300e- 003	0.1534	0.0404	1.1300e- 003	0.0415	1	150.8754	150.8754	4.2400e- 003		150.9813
Total	0.0607	0.0376	0.5263	1.5100e- 003	0.1521	1.2300e- 003	0.1534	0.0404	1.1300e- 003	0.0415		150.8754	150.8754	4.2400e- 003		150.9813

3.5 Building Construction - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		2,554.333 6	2,554.333 6	0.6120		2,569.632 2
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		2,554.333 6	2,554.333 6	0.6120		2,569.632 2

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2022 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.4079	13.2032	3.4341	0.0364	0.9155	0.0248	0.9404	0.2636	0.0237	0.2873		3,896.548 2	3,896.548 2	0.2236		3,902.138 4
Worker	2.4299	1.5074	21.0801	0.0607	6.0932	0.0493	6.1425	1.6163	0.0454	1.6617		6,042.558 5	6,042.558 5	0.1697		6,046.800 0
Total	2.8378	14.7106	24.5142	0.0971	7.0087	0.0741	7.0828	1.8799	0.0691	1.9490		9,939.106 7	9,939.106 7	0.3933		9,948.938 4

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay	v	
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	2,554.333 6	2,554.333 6	0.6120		2,569.632 2
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	2,554.333 6	2,554.333 6	0.6120		2,569.632

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2022 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			•		lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.4079	13.2032	3.4341	0.0364	0.9155	0.0248	0.9404	0.2636	0.0237	0.2873		3,896.548 2	3,896.548 2	0.2236		3,902.138 4
Worker	2.4299	1.5074	21.0801	0.0607	6.0932	0.0493	6.1425	1.6163	0.0454	1.6617	1	6,042.558 5	6,042.558 5	0.1697		6,046.800 0
Total	2.8378	14.7106	24.5142	0.0971	7.0087	0.0741	7.0828	1.8799	0.0691	1.9490		9,939.106 7	9,939.106 7	0.3933		9,948.938 4

3.5 Building Construction - 2023 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2023 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.3027	10.0181	3.1014	0.0352	0.9156	0.0116	0.9271	0.2636	0.0111	0.2747	ļ	3,773.876 2	3,773.876 2	0.1982		3,778.830 0
Worker	2.2780	1.3628	19.4002	0.0584	6.0932	0.0479	6.1411	1.6163	0.0441	1.6604	l	5,821.402 8	5,821.402 8	0.1529		5,825.225 4
Total	2.5807	11.3809	22.5017	0.0936	7.0088	0.0595	7.0682	1.8799	0.0552	1.9350		9,595.279 0	9,595.279 0	0.3511		9,604.055 4

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2023 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.3027	10.0181	3.1014	0.0352	0.9156	0.0116	0.9271	0.2636	0.0111	0.2747		3,773.876 2	3,773.876 2	0.1982		3,778.830 0
Worker	2.2780	1.3628	19.4002	0.0584	6.0932	0.0479	6.1411	1.6163	0.0441	1.6604		5,821.402 8	5,821.402 8	0.1529		5,825.225 4
Total	2.5807	11.3809	22.5017	0.0936	7.0088	0.0595	7.0682	1.8799	0.0552	1.9350		9,595.279 0	9,595.279 0	0.3511		9,604.055 4

3.6 Paving - 2023 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694		2,207.584 1	2,207.584 1	0.7140		2,225.433 6
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694		2,207.584 1	2,207.584 1	0.7140		2,225.433 6

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2023 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0427	0.0255	0.3633	1.0900e- 003	0.1141	9.0000e- 004	0.1150	0.0303	8.3000e- 004	0.0311		109.0150	109.0150	2.8600e- 003		109.0866
Total	0.0427	0.0255	0.3633	1.0900e- 003	0.1141	9.0000e- 004	0.1150	0.0303	8.3000e- 004	0.0311		109.0150	109.0150	2.8600e- 003		109.0866

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	l		0.0000			0.0000
Total	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2023 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category				•	lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	0.0000	0.0000	0.0000		0.0000
Worker	0.0427	0.0255	0.3633	1.0900e- 003	0.1141	9.0000e- 004	0.1150	0.0303	8.3000e- 004	0.0311	1	109.0150	109.0150	2.8600e- 003		109.0866
Total	0.0427	0.0255	0.3633	1.0900e- 003	0.1141	9.0000e- 004	0.1150	0.0303	8.3000e- 004	0.0311		109.0150	109.0150	2.8600e- 003		109.0866

3.6 Paving - 2024 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310		2,207.547 2	2,207.547 2	0.7140		2,225.396
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	İ	 	0.0000		 !	0.0000
Total	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	İ	2,207.547	2,207.547 2	0.7140		2,225.396

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2024 Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			•	•	lb/	day							lb/c	day		•
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	ļ	0.0000	0.0000	0.0000		0.0000
Worker	0.0403	0.0233	0.3384	1.0600e- 003	0.1141	8.8000e- 004	0.1150	0.0303	8.1000e- 004	0.0311		105.6336	105.6336	2.6300e- 003		105.6992
Total	0.0403	0.0233	0.3384	1.0600e- 003	0.1141	8.8000e- 004	0.1150	0.0303	8.1000e- 004	0.0311	İ	105.6336	105.6336	2.6300e- 003		105.6992

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day	v.	
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396 3
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396 3

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2024 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			9		lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0403	0.0233	0.3384	1.0600e- 003	0.1141	8.8000e- 004	0.1150	0.0303	8.1000e- 004	0.0311	1	105.6336	105.6336	2.6300e- 003		105.6992
Total	0.0403	0.0233	0.3384	1.0600e- 003	0.1141	8.8000e- 004	0.1150	0.0303	8.1000e- 004	0.0311		105.6336	105.6336	2.6300e- 003		105.6992

3.7 Architectural Coating - 2024 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Archit. Coating	236.4115					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443
Total	236.5923	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.7 Architectural Coating - 2024 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.4296	0.2481	3.6098	0.0113	1.2171	9.4300e- 003	1.2266	0.3229	8.6800e- 003	0.3315		1,126.758 3	1,126.758 3	0.0280		1,127.458 3
Total	0.4296	0.2481	3.6098	0.0113	1.2171	9.4300e- 003	1.2266	0.3229	8.6800e- 003	0.3315		1,126.758 3	1,126.758 3	0.0280		1,127.458 3

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Archit. Coating	236.4115					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443
Total	236.5923	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.7 Architectural Coating - 2024 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.4296	0.2481	3.6098	0.0113	1.2171	9.4300e- 003	1.2266	0.3229	8.6800e- 003	0.3315		1,126.758 3	1,126.758 3	0.0280		1,127.458 3
Total	0.4296	0.2481	3.6098	0.0113	1.2171	9.4300e- 003	1.2266	0.3229	8.6800e- 003	0.3315		1,126.758 3	1,126.758 3	0.0280		1,127.458 3

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 28 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/s	day							lb/c	lay		
Mitigated	9.8489	45.4304	114.8495	0.4917	45.9592	0.3360	46.2951	12.2950	0.3119	12.6070		50,306.60 34	50,306.60 34	2.1807		50,361.12 08
Unmitigated	9.8489	45.4304	114.8495	0.4917	45.9592	0.3360	46.2951	12.2950	0.3119	12.6070		50,306.60 34	50,306.60 34	2.1807		50,361.12 08

4.2 Trip Summary Information

	Ave	rage Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	145.75	154.25	154.00	506,227	506,227
Apartments Mid Rise	4,026.75	3,773.25	4075.50	13,660,065	13,660,065
General Office Building	288.45	62.55	31.05	706,812	706,812
High Turnover (Sit Down Restaurant)	2,368.80	2,873.52	2817.72	3,413,937	3,413,937
Hotel	192.00	187.50	160.00	445,703	445,703
Quality Restaurant	501.12	511.92	461.20	707,488	707,488
Regional Shopping Center	528.08	601.44	357.84	1,112,221	1,112,221
Total	8,050.95	8,164.43	8,057.31	20,552,452	20,552,452

4.3 Trip Type Information

Page 29 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
High Turnover (Sit Down	16.60	8.40	6.90	8.50	72.50	19.00	37	20	43
Hotel	16.60	8.40	6.90	19.40	61.60	19.00	58	38	4
Quality Restaurant	16.60	8.40	6.90	12.00	69.00	19.00	38	18	44
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Low Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Apartments Mid Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
General Office Building	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
High Turnover (Sit Down Restaurant)	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Hotel	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Quality Restaurant	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Regional Shopping Center	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.00082

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Page 30 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
NaturalGas Mitigated	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7
NaturalGas Unmitigated	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7

 CalEEMod Version: CalEEMod.2016.3.2
 Page 31 of 35
 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	day		
Apartments Low Rise	1119.16	0.0121	0.1031	0.0439	6.6000e- 004		8.3400e- 003	8.3400e- 003		8.3400e- 003	8.3400e- 003		131.6662	131.6662	2.5200e- 003	2.4100e- 003	132.4486
Apartments Mid Rise	35784.3	0.3859	3.2978	1.4033	0.0211		0.2666	0.2666		0.2666	0.2666		4,209.916 4	4,209.916 4	0.0807	0.0772	4,234.933 9
General Office Building	1283.42	0.0138	0.1258	0.1057	7.5000e- 004		9.5600e- 003	9.5600e- 003		9.5600e- 003	9.5600e- 003		150.9911	150.9911	2.8900e- 003	2.7700e- 003	151.8884
High Turnover (Sit Down Restaurant)		0.2455	2.2314	1.8743	0.0134		0.1696	0.1696		0.1696	0.1696		2,677.634 2	2,677.634 2	0.0513	0.0491	2,693.546 0
Hotel	4769.72	0.0514	0.4676	0.3928	2.8100e- 003		0.0355	0.0355		0.0355	0.0355		561.1436	561.1436	0.0108	0.0103	564.4782
Quality Restaurant	5057.75	0.0545	0.4959	0.4165	2.9800e- 003		0.0377	0.0377		0.0377	0.0377		595.0298	595.0298	0.0114	0.0109	598.5658
Regional Shopping Center		2.7100e- 003	0.0247	0.0207	1.5000e- 004		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003		29.6019	29.6019	5.7000e- 004	5.4000e- 004	29.7778
Total		0.7660	6.7463	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292	Ī	8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7

CalEEMod Version: CalEEMod.2016.3.2 Page 32 of 35 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

5.2 Energy by Land Use - NaturalGas Mitigated

NaturalGa s Use	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
kBTU/yr					lb/	day							lb/c	lay	•	
1.11916	0.0121	0.1031	0.0439	6.6000e- 004		8.3400e- 003	8.3400e- 003		8.3400e- 003	8.3400e- 003		131.6662	131.6662	2.5200e- 003	2.4100e- 003	132.4486
35.7843	0.3859	3.2978	1.4033	0.0211		0.2666	0.2666		0.2666	0.2666		4,209.916 4	4,209.916 4	0.0807	0.0772	4,234.933 9
1.28342	0.0138	0.1258	0.1057	7.5000e- 004		9.5600e- 003	9.5600e- 003		9.5600e- 003	9.5600e- 003		150.9911	150.9911	2.8900e- 003	2.7700e- 003	151.8884
22.7599	0.2455	2.2314	1.8743	0.0134		0.1696	0.1696		0.1696	0.1696		2,677.634 2	2,677.634 2	0.0513	0.0491	2,693.546 0
4.76972	0.0514	0.4676	0.3928	2.8100e- 003		0.0355	0.0355		0.0355	0.0355		561.1436	561.1436	0.0108	0.0103	564.4782
5.05775	0.0545	0.4959	0.4165	2.9800e- 003		0.0377	0.0377		0.0377	0.0377		595.0298	595.0298	0.0114	0.0109	598.5658
0.251616	2.7100e- 003	0.0247	0.0207	1.5000e- 004		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003		29.6019	29.6019	5.7000e- 004	5.4000e- 004	29.7778
	0.7660	6.7463	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7
	s Use kBTU/yr 1.11916 3 35.7843 1.28342 22.7599 4.76972 5.05775 0.251616	s Use KBTUlyr 1.11916 0.0121 35.7843 0.3859 1.28342 0.0138 22.7599 0.2455 4.76972 0.0514 5.05775 0.0545 0.251616 2.7100e-003	s Use RBTUlyr 1.11916 0.0121 0.1031 35.7843 0.3859 3.2978 1.28342 0.0138 0.1258 22.7599 0.2455 2.2314 4.76972 0.0514 0.4676 5.05775 0.0545 0.4959 0.251616 2.7100e-003 0.0247 003 0.0247 0.0347	s Use RBTUlyr 1.11916 0.0121 0.1031 0.0439 35.7843 0.3859 3.2978 1.4033 1.28342 0.0138 0.1258 0.1057 22.7599 0.2455 2.2314 1.8743 4.76972 0.0514 0.4676 0.3928 5.05775 0.0545 0.4959 0.4165 0.251616 2.7100e- 003 0.0247 0.0207	s Use RBTUI/yr 1.11916 0.0121 0.1031 0.0439 6.6000e-004 35.7843 0.3859 3.2978 1.4033 0.0211 1.28342 0.0138 0.1258 0.1057 7.5000e-004 22.7599 0.2455 2.2314 1.6743 0.0134 4.76972 0.0514 0.4676 0.3928 2.8100e-003 5.05775 0.0545 0.4959 0.4165 2.3800e-003 0.251616 2.7100e-003 0.0247 0.0207 1.5000e-004	s Use PM10 L111916 0.0121 0.1031 0.0439 6.6000e-004 35.7843 0.3859 3.2978 1.4033 0.0211 1.28342 0.0138 0.1258 0.1057 7.5000e-004 22.7598 0.2455 2.2314 1.8743 0.0134 4.76972 0.0514 0.4676 0.3928 2.8100e-003 5.05775 0.0545 0.4959 0.4165 2.9800e-003 0.251616 2.7100e-003 0.0247 0.0207 1.5000e-004	s Use PM10 PM10 PM10 RBTUlyr Ib/day 1.11916 0.0121 0.1031 0.0439 6.6000e-004 8.3400e-003 35.7843 0.3859 3.2978 1.4033 0.0211 0.2666 1.28342 0.0138 0.1258 0.1057 7.5000e-004 9.5600e-003 22.7599 0.2455 2.2314 1.8743 0.0134 0.1696 4.76972 0.0514 0.4676 0.3928 2.8100e-003 0.0355 5.05775 0.0545 0.4959 0.4165 2.2800e-003 0.0377 0.251616 2.7100e-003 0.0247 0.0207 1.5000e-004 1.8700e-003	KBTUlyr Ibids Ibids PM10 PM10 Total 1.11916 0.0121 0.1031 0.0439 6.6000e 004 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 8.3400e 003 9.5500e 003 9.5500e 003 9.5500e 003 9.5500e 003 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.035 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.037 9.036 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.03 <td< td=""><td>s Use PM10 PM10 PM10 Total PM2.5 KBTUlyr tbclsv 1.11916 0.0121 0.1031 0.0439 6.6000e-004 8.3400e-003 8.3400e-003 8.3400e-003 0.033 35.7843 0.3959 3.2978 1.4033 0.0211 0.2666 0.2666 0.2666 1.28342 0.0138 0.1258 0.1057 7.500e-04 9.560e-03 9.560e-003 0.03 22.7599 0.2455 2.2314 1.8743 0.0134 0.1696 0.1696 4.76972 0.0514 0.4676 0.3928 2.810e-03 0.0355 0.0355 5.05775 0.0545 0.4959 0.4165 2.980e-09 0.0377 0.0377 0.251616 2.7100e-003 0.0247 0.0207 1.5000e-004 1.8700e-003 0.1870e-003</td><td>s Use Image: Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th</td><td>KBTUlyr Bull PM0 PM10 PM10 Total PM2.5 PM2.5 Total 1.11916 0.0121 0.1031 0.0439 6.6000e OO4 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.000 9.000 9.000 9.000 9.000 9.5500e OO3 9.5500e OO3 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000</td><td> RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTU</td><td> No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.</td><td> BTU-yr B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10</td><td> RBTUlyr Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday </td><td> RBTUlyr State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State St</td></td<>	s Use PM10 PM10 PM10 Total PM2.5 KBTUlyr tbclsv 1.11916 0.0121 0.1031 0.0439 6.6000e-004 8.3400e-003 8.3400e-003 8.3400e-003 0.033 35.7843 0.3959 3.2978 1.4033 0.0211 0.2666 0.2666 0.2666 1.28342 0.0138 0.1258 0.1057 7.500e-04 9.560e-03 9.560e-003 0.03 22.7599 0.2455 2.2314 1.8743 0.0134 0.1696 0.1696 4.76972 0.0514 0.4676 0.3928 2.810e-03 0.0355 0.0355 5.05775 0.0545 0.4959 0.4165 2.980e-09 0.0377 0.0377 0.251616 2.7100e-003 0.0247 0.0207 1.5000e-004 1.8700e-003 0.1870e-003	s Use Image: Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th	KBTUlyr Bull PM0 PM10 PM10 Total PM2.5 PM2.5 Total 1.11916 0.0121 0.1031 0.0439 6.6000e OO4 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 8.3400e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.5500e OO3 9.000 9.000 9.000 9.000 9.000 9.5500e OO3 9.5500e OO3 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000	RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTUlyr RBTU	No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	BTU-yr B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10 B-10	RBTUlyr Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday Ibiday	RBTUlyr State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State St

6.0 Area Detail

6.1 Mitigation Measures Area

Page 33 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/i	day							lb/c	iay		
Mitigated	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92
Unmitigated	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

6.2 Area by SubCategory Unmitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/	day							lb/c	iay		
Architectural Coating	2.2670					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	24.1085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	1.6500	14.1000	6.0000	0.0900		1.1400	1.1400		1.1400	1.1400	0.0000	18,000.00 00	18,000.00 00	0.3450	0.3300	18,106.96 50
Landscaping	2.4766	0.9496	82.4430	4.3600e- 003		0.4574	0.4574		0.4574	0.4574		148.5950	148.5950	0.1424		152.1542
Total	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

Page 34 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

6.2 Area by SubCategory Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/	day							lb/c	day		
Architectural Coating	2.2670					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	24.1085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	1.6500	14.1000	6.0000	0.0900		1.1400	1.1400		1.1400	1.1400	0.0000	18,000.00 00	18,000.00 00	0.3450	0.3300	18,106.96 50
Landscaping	2.4766	0.9496	82.4430	4.3600e- 003		0.4574	0.4574		0.4574	0.4574		148.5950	148.5950	0.1424		152.1542
Total	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

 CalEEMod Version: CalEEMod.2016.3.2
 Page 35 of 35
 Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>	2				X-	
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment					-	
Equipment Type	Number	Ī				

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Village South Specific Plan (Proposed) Los Angeles-South Coast County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	45.00	1000sqft	1.03	45,000.00	0
High Turnover (Sit Down Restaurant)	36.00	1000sqft	0.83	36,000.00	0
Hotel	50.00	Room	1.67	72,600.00	0
Quality Restaurant	8.00	1000sqft	0.18	8,000.00	0
Apartments Low Rise	25.00	Dwelling Unit	1.56	25,000.00	72
Apartments Mid Rise	975.00	Dwelling Unit	25.66	975,000.00	2789
Regional Shopping Center	56.00	1000sqft	1.29	56,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	9			Operational Year	2028
Utility Company	Southern Californ	nia Edison			
CO2 Intensity (lb/MWhr)	702.44	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (lb/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

 $\label{lem:construction} \textbf{Construction Phase - See SWAPE comment regarding individual construction phase lengths.}$

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use -

 $Construction\ Off-road\ Equipment\ Mitigation\ -\ See\ SWAPE\ comment\ on\ construction-related\ mitigation.$

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

Trips and VMT - Local hire provision

Table Name	Column Name	Default Value	New Value
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	NumberWood	1.25	0.00
tblFireplaces	NumberWood	48.75	0.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblTripsAndVMT	WorkerTripLength	14.70	10.00
tblVehicleTrips	ST_TR	7.16	6.17
tblVehicleTrips	ST_TR	6.39	3.87
tblVehicleTrips	ST_TR	2.46	1.39
tblVehicleTrips	ST_TR	158.37	79.82

 CalEEMod Version: CalEEMod.2016.3.2
 Page 3 of 35
 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

tblVehicleTrips	ST_TR	8.19	3.75
tblVehicleTrips	ST_TR	94.36	63.99
tblVehicleTrips	ST_TR	49.97	10.74
tblVehicleTrips	SU_TR	6.07	6.16
tblVehicleTrips	SU_TR	5.86	4.18
tblVehicleTrips	SU_TR	1.05	0.69
tblVehicleTrips	SU_TR	131.84	78.27
tblVehicleTrips	SU_TR	5.95	3.20
tblVehicleTrips	SU_TR	72.16	57.65
tblVehicleTrips	SU_TR	25.24	6.39
tblVehicleTrips	WD_TR	6.59	5.83
tblVehicleTrips	WD_TR	6.65	4.13
tblVehicleTrips	WD_TR	11.03	6.41
tblVehicleTrips	WD_TR	127.15	65.80
tblVehicleTrips	WD_TR	8.17	3.84
tblVehicleTrips	WD_TR	89.95	62.64
tblVehicleTrips	WD_TR	42.70	9.43
tblWoodstoves	NumberCatalytic	1.25	0.00
tblWoodstoves	NumberCatalytic	48.75	0.00
tblWoodstoves	NumberNoncatalytic	1.25	0.00
tblWoodstoves	NumberNoncatalytic	48.75	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00

2.0 Emissions Summary

 CalEEMod Version: CalEEMod.2016.3.2
 Page 4 of 35
 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.1 Overall Construction (Maximum Daily Emission) <u>Unmitigated Construction</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	day	, , , , , , , , , , , , , , , , , , , 						lb/d	lay		
2021	4.2621	46.4460	31.4068	0.0635	18.2032	2.0456	20.2488	9.9670	1.8820	11.8490	0.0000	6,154.337 7	6,154.337 7	1.9472	0.0000	6,203.018
2022	4.7966	38.8851	39.6338	0.1195	8.8255	1.6361	10.4616	3.6369	1.5052	5.1421	0.0000	12,035.34 40	12,035.34 40	1.9482	0.0000	12,060.60 13
2023	4.3939	25.8648	37.5031	0.1162	7.0088	0.7598	7.7685	1.8799	0.7142	2.5940	0.0000	11,710.40 80	11,710.40 80	0.9617	0.0000	11,734.4 97
2024	237.0656	9.5503	14.9372	0.0238	1.2171	0.4694	1.2875	0.3229	0.4319	0.4621	0.0000	2,307.051 7	2,307.051 7	0.7164	0.0000	2,324.96 7
Maximum	237.0656	46.4460	39.6338	0.1195	18.2032	2.0456	20.2488	9.9670	1.8820	11.8490	0.0000	12,035.34 40	12,035.34 40	1.9482	0.0000	12,060.60

 CalEEMod Version: CalEEMod.2016.3.2
 Page 5 of 35
 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.1 Overall Construction (Maximum Daily Emission) Mitigated Construction

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	/day							lb/d	day		•
2021	4.2621	46.4460	31.4068	0.0635	18.2032	2.0456	20.2488	9.9670	1.8820	11.8490	0.0000	6,154.337 7	6,154.337 7	1.9472	0.0000	6,203.01
2022	4.7966	38.8851	39.6338	0.1195	8.8255	1.6361	10.4616	3.6369	1.5052	5.1421	0.0000	12,035.34 40	12,035.34 40	1.9482	0.0000	12,060.6 13
2023	4.3939	25.8648	37.5031	0.1162	7.0088	0.7598	7.7685	1.8799	0.7142	2.5940	0.0000	11,710.40 80	11,710.40 80	0.9617	0.0000	11,734.4 97
2024	237.0656	9.5503	14.9372	0.0238	1.2171	0.4694	1.2875	0.3229	0.4319	0.4621	0.0000	2,307.051 7	2,307.051 7	0.7164	0.0000	2,324.96 7
Maximum	237.0656	46.4460	39.6338	0.1195	18.2032	2.0456	20.2488	9.9670	1.8820	11.8490	0.0000	12,035.34 40	12,035.34 40	1.9482	0.0000	12,060.6 13
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

 CalEEMod Version: CalEEMod.2016.3.2
 Page 6 of 35
 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category		lb/day									lb/day						
Area	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92	
Energy	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292	l	8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7	
Mobile	9.5233	45.9914	110.0422	0.4681	45.9592	0.3373	46.2965	12.2950	0.3132	12.6083	l	47,917.80 05	47,917.80 05	2.1953		47,972.68 39	
Total	40.7912	67.7872	202.7424	0.6043	45.9592	2.4640	48.4231	12.2950	2.4399	14.7349	0.0000	74,422.37 87	74,422.37 87	2.8429	0.4832	74,637.44 17	

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category		lbˈday									lb/day						
Area	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.1 92	
Energy	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.63 7	
Mobile	9.5233	45.9914	110.0422	0.4681	45.9592	0.3373	46.2965	12.2950	0.3132	12.6083		47,917.80 05	47,917.80 05	2.1953		47,972.6 39	
Total	40.7912	67.7872	202.7424	0.6043	45.9592	2.4640	48.4231	12.2950	2.4399	14.7349	0.0000	74,422.37 87	74,422.37 87	2.8429	0.4832	74,637.4 17	

Page 7 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	9/1/2021	10/12/2021	5	30	
2	Site Preparation	Site Preparation	10/13/2021	11/9/2021	5	20	
3	Grading	Grading	11/10/2021	1/11/2022	5	45	
4	Building Construction	Building Construction	1/12/2022	12/12/2023	5	500	
5	Paving	Paving	12/13/2023	1/30/2024	5	35	
6	Architectural Coating	Architectural Coating	1/31/2024	3/19/2024	5	35	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Page 8 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Excavators	3	8.00	158	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Page 9 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	0.00	458.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	7	18.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	801.00	143.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	160.00	0.00	0.00	10.00	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2021

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					3.3074	0.0000	3.3074	0.5008	0.0000	0.5008			0.0000			0.0000
Off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411		3,747.944 9	3,747.944 9	1.0549		3,774.317 4
Total	3.1651	31.4407	21.5650	0.0388	3.3074	1.5513	4.8588	0.5008	1.4411	1.9419		3,747.944 9	3,747.944 9	1.0549		3,774.317 4

CalEEMod Version: CalEEMod.2016.3.2 Page 10 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.2 Demolition - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category				•	lb	'day							lb/c	lay		
Hauling	0.1304	4.1454	1.0182	0.0117	0.2669	0.0128	0.2797	0.0732	0.0122	0.0854		1,269.855 5	1,269.855 5	0.0908	:	1,272.125 2
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	l	0.0000	0.0000	0.0000		0.0000
Worker	0.0532	0.0346	0.3963	1.1100e- 003	0.1141	9.5000e- 004	0.1151	0.0303	8.8000e- 004	0.0311	l	110.4707	110.4707	3.3300e- 003		110.5539
Total	0.1835	4.1800	1.4144	0.0128	0.3810	0.0137	0.3948	0.1034	0.0131	0.1165		1,380.326 2	1,380.326 2	0.0941		1,382.679 1

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					3.3074	0.0000	3.3074	0.5008	0.0000	0.5008		į	0.0000			0.0000
Off-Road	3.1651	31.4407	21.5650	0.0388		1.5513	1.5513		1.4411	1.4411	0.0000	3,747.944 9	3,747.944 9	1.0549		3,774.317 4
Total	3.1651	31.4407	21.5650	0.0388	3.3074	1.5513	4.8588	0.5008	1.4411	1.9419	0.0000	3,747.944 9	3,747.944 9	1.0549		3,774.317 4

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.2 Demolition - 2021 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.1304	4.1454	1.0182	0.0117	0.2669	0.0128	0.2797	0.0732	0.0122	0.0854		1,269.855 5	1,269.855 5	0.0908		1,272.125 2
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0532	0.0346	0.3963	1.1100e- 003	0.1141	9.5000e- 004	0.1151	0.0303	8.8000e- 004	0.0311		110.4707	110.4707	3.3300e- 003		110.5539
Total	0.1835	4.1800	1.4144	0.0128	0.3810	0.0137	0.3948	0.1034	0.0131	0.1165		1,380.326 2	1,380.326 2	0.0941		1,382.679 1

3.3 Site Preparation - 2021 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					18.0663	0.0000	18.0663	9.9307	0.0000	9.9307			0.0000			0.0000
Off-Road	3.8882	40.4971	21.1543	0.0380		2.0445	2.0445		1.8809	1.8809		3,685.656 9	3,685.656 9	1.1920		3,715.457 3
Total	3.8882	40.4971	21.1543	0.0380	18.0663	2.0445	20.1107	9.9307	1.8809	11.8116		3,685.656 9	3,685.656 9	1.1920		3,715.457 3

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.3 Site Preparation - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0638	0.0415	0.4755	1.3300e- 003	0.1369	1.1400e- 003	0.1381	0.0363	1.0500e- 003	0.0374		132.5649	132.5649	3.9900e- 003		132.6646
Total	0.0638	0.0415	0.4755	1.3300e- 003	0.1369	1.1400e- 003	0.1381	0.0363	1.0500e- 003	0.0374		132.5649	132.5649	3.9900e- 003		132.6646

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day	v.	
Fugitive Dust					18.0663	0.0000	18.0663	9.9307	0.0000	9.9307			0.0000			0.0000
Off-Road	3.8882	40.4971	21.1543	0.0380		2.0445	2.0445		1.8809	1.8809	0.0000	3,685.656 9	3,685.656 9	1.1920		3,715.457 3
Total	3.8882	40.4971	21.1543	0.0380	18.0663	2.0445	20.1107	9.9307	1.8809	11.8116	0.0000	3,685.656 9	3,685.656 9	1.1920		3,715.457 3

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.3 Site Preparation - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0638	0.0415	0.4755	1.3300e- 003	0.1369	1.1400e- 003	0.1381	0.0363	1.0500e- 003	0.0374		132.5649	132.5649	3.9900e- 003		132.6646
Total	0.0638	0.0415	0.4755	1.3300e- 003	0.1369	1.1400e- 003	0.1381	0.0363	1.0500e- 003	0.0374		132.5649	132.5649	3.9900e- 003		132.6646

3.4 Grading - 2021 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust	-				8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	4.1912	46.3998	30.8785	0.0620		1.9853	1.9853		1.8265	1.8265	İ	6,007.043 4	6,007.043 4	1.9428		6,055.613 4
Total	4.1912	46.3998	30.8785	0.0620	8.6733	1.9853	10.6587	3.5965	1.8265	5.4230		6,007.043 4	6,007.043 4	1.9428		6,055.613 4

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2021 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			•	•	lb/	'day							lb/c	day		•
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	İ	0.0000	0.0000	0.0000		0.0000
Worker	0.0709	0.0462	0.5284	1.4800e- 003	0.1521	1.2700e- 003	0.1534	0.0404	1.1700e- 003	0.0415		147.2943	147.2943	4.4300e- 003		147.4051
Total	0.0709	0.0462	0.5284	1.4800e- 003	0.1521	1.2700e- 003	0.1534	0.0404	1.1700e- 003	0.0415		147.2943	147.2943	4.4300e- 003		147.4051

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day	0	
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	4.1912	46.3998	30.8785	0.0620		1.9853	1.9853		1.8265	1.8265	0.0000	6,007.043 4	6,007.043 4	1.9428		6,055.613 4
Total	4.1912	46.3998	30.8785	0.0620	8.6733	1.9853	10.6587	3.5965	1.8265	5.4230	0.0000	6,007.043 4	6,007.043 4	1.9428		6,055.613 4

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2021 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0709	0.0462	0.5284	1.4800e- 003	0.1521	1.2700e- 003	0.1534	0.0404	1.1700e- 003	0.0415		147.2943	147.2943	4.4300e- 003		147.4051
Total	0.0709	0.0462	0.5284	1.4800e- 003	0.1521	1.2700e- 003	0.1534	0.0404	1.1700e- 003	0.0415		147.2943	147.2943	4.4300e- 003		147.4051

3.4 Grading - 2022 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Fugitive Dust	-				8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	3.6248	38.8435	29.0415	0.0621		1.6349	1.6349		1.5041	1.5041	İ	6,011.410 5	6,011.410 5	1.9442		6,060.015
Total	3.6248	38.8435	29.0415	0.0621	8.6733	1.6349	10.3082	3.5965	1.5041	5.1006		6,011.410 5	6,011.410 5	1.9442		6,060.015 8

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2022 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0665	0.0416	0.4861	1.4300e- 003	0.1521	1.2300e- 003	0.1534	0.0404	1.1300e- 003	0.0415		142.1207	142.1207	4.0000e- 003		142.2207
Total	0.0665	0.0416	0.4861	1.4300e- 003	0.1521	1.2300e- 003	0.1534	0.0404	1.1300e- 003	0.0415		142.1207	142.1207	4.0000e- 003		142.2207

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	3.6248	38.8435	29.0415	0.0621		1.6349	1.6349		1.5041	1.5041	0.0000	6,011.410 5	6,011.410 5	1.9442		6,060.015 8
Total	3.6248	38.8435	29.0415	0.0621	8.6733	1.6349	10.3082	3.5965	1.5041	5.1006	0.0000	6,011.410 5	6,011.410 5	1.9442		6,060.015 8

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2022 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/e	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0665	0.0416	0.4861	1.4300e- 003	0.1521	1.2300e- 003	0.1534	0.0404	1.1300e- 003	0.0415		142.1207	142.1207	4.0000e- 003		142.2207
Total	0.0665	0.0416	0.4861	1.4300e- 003	0.1521	1.2300e- 003	0.1534	0.0404	1.1300e- 003	0.0415		142.1207	142.1207	4.0000e- 003		142.2207

3.5 Building Construction - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		2,554.333 6	2,554.333 6	0.6120		2,569.632 2
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612		2,554.333 6	2,554.333 6	0.6120		2,569.632 2

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2022 Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.4284	13.1673	3.8005	0.0354	0.9155	0.0256	0.9412	0.2636	0.0245	0.2881		3,789.075 0	3,789.075 0	0.2381		3,795.028 3
Worker	2.6620	1.6677	19.4699	0.0571	6.0932	0.0493	6.1425	1.6163	0.0454	1.6617		5,691.935 4	5,691.935 4	0.1602		5,695.940 8
Total	3.0904	14.8350	23.2704	0.0926	7.0087	0.0749	7.0836	1.8799	0.0699	1.9498		9,481.010 4	9,481.010 4	0.3984		9,490.969 1

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	2,554.333 6	2,554.333 6	0.6120		2,569.632 2
Total	1.7062	15.6156	16.3634	0.0269		0.8090	0.8090		0.7612	0.7612	0.0000	2,554.333 6	2,554.333 6	0.6120		2,569.632

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2022 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.4284	13.1673	3.8005	0.0354	0.9155	0.0256	0.9412	0.2636	0.0245	0.2881		3,789.075 0	3,789.075 0	0.2381		3,795.028 3
Worker	2.6620	1.6677	19.4699	0.0571	6.0932	0.0493	6.1425	1.6163	0.0454	1.6617		5,691.935 4	5,691.935 4	0.1602		5,695.940 8
Total	3.0904	14.8350	23.2704	0.0926	7.0087	0.0749	7.0836	1.8799	0.0699	1.9498		9,481.010 4	9,481.010 4	0.3984		9,490.969 1

3.5 Building Construction - 2023 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584		2,555.209 9	2,555.209 9	0.6079		2,570.406 1

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2023 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.3183	9.9726	3.3771	0.0343	0.9156	0.0122	0.9277	0.2636	0.0116	0.2752	ļ	3,671.400 7	3,671.400 7	0.2096		3,676.641 7
Worker	2.5029	1.5073	17.8820	0.0550	6.0932	0.0479	6.1411	1.6163	0.0441	1.6604	1	5,483.797 4	5,483.797 4	0.1442		5,487.402 0
Total	2.8211	11.4799	21.2591	0.0893	7.0088	0.0601	7.0688	1.8799	0.0557	1.9356		9,155.198 1	9,155.198 1	0.3538		9,164.043 7

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1
Total	1.5728	14.3849	16.2440	0.0269		0.6997	0.6997		0.6584	0.6584	0.0000	2,555.209 9	2,555.209 9	0.6079		2,570.406 1

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2023 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.3183	9.9726	3.3771	0.0343	0.9156	0.0122	0.9277	0.2636	0.0116	0.2752		3,671.400 7	3,671.400 7	0.2096		3,676.641 7
Worker	2.5029	1.5073	17.8820	0.0550	6.0932	0.0479	6.1411	1.6163	0.0441	1.6604		5,483.797 4	5,483.797 4	0.1442		5,487.402 0
Total	2.8211	11.4799	21.2591	0.0893	7.0088	0.0601	7.0688	1.8799	0.0557	1.9356		9,155.198 1	9,155.198 1	0.3538		9,164.043 7

3.6 Paving - 2023 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694		2,207.584 1	2,207.584 1	0.7140		2,225.433
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	İ	2,207.584 1	2,207.584 1	0.7140		2,225.433 6

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2023 Unmitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			9		lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0469	0.0282	0.3349	1.0300e- 003	0.1141	9.0000e- 004	0.1150	0.0303	8.3000e- 004	0.0311	1	102.6928	102.6928	2.7000e- 003		102.7603
Total	0.0469	0.0282	0.3349	1.0300e- 003	0.1141	9.0000e- 004	0.1150	0.0303	8.3000e- 004	0.0311		102.6928	102.6928	2.7000e- 003		102.7603

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6

Date: 1/12/2021 2:30 PM

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2023 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			9		lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0469	0.0282	0.3349	1.0300e- 003	0.1141	9.0000e- 004	0.1150	0.0303	8.3000e- 004	0.0311	1	102.6928	102.6928	2.7000e- 003		102.7603
Total	0.0469	0.0282	0.3349	1.0300e- 003	0.1141	9.0000e- 004	0.1150	0.0303	8.3000e- 004	0.0311		102.6928	102.6928	2.7000e- 003		102.7603

3.6 Paving - 2024 Unmitigated Construction On-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310		2,207.547 2	2,207.547 2	0.7140		2,225.396
Paving	0.0000					0.0000	0.0000	<u> </u>	0.0000	0.0000	ļ		0.0000			0.0000
Total	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685	İ	0.4310	0.4310	İ	2,207.547 2	2,207.547 2	0.7140		2,225.396

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2024 Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	İ	0.0000	0.0000	0.0000		0.0000
Worker	0.0444	0.0257	0.3114	1.0000e- 003	0.1141	8.8000e- 004	0.1150	0.0303	8.1000e- 004	0.0311	İ	99.5045	99.5045	2.4700e- 003		99.5663
Total	0.0444	0.0257	0.3114	1.0000e- 003	0.1141	8.8000e- 004	0.1150	0.0303	8.1000e- 004	0.0311	İ	99.5045	99.5045	2.4700e- 003		99.5663

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Off-Road	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547 2	2,207.547 2	0.7140		2,225.396
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	l		0.0000			0.0000
Total	0.9882	9.5246	14.6258	0.0228		0.4685	0.4685		0.4310	0.4310	0.0000	2,207.547	2,207.547 2	0.7140		2,225.396 3

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2024 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			9		lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0444	0.0257	0.3114	1.0000e- 003	0.1141	8.8000e- 004	0.1150	0.0303	8.1000e- 004	0.0311	1	99.5045	99.5045	2.4700e- 003		99.5663
Total	0.0444	0.0257	0.3114	1.0000e- 003	0.1141	8.8000e- 004	0.1150	0.0303	8.1000e- 004	0.0311		99.5045	99.5045	2.4700e- 003		99.5663

3.7 Architectural Coating - 2024 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Archit. Coating	236.4115					0.0000	0.0000		0.0000	0.0000		į	0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	ļ	281.4481	281.4481	0.0159		281.8443
Total	236.5923	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443

Date: 1/12/2021 2:30 PM

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.7 Architectural Coating - 2024 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.4734	0.2743	3.3220	0.0107	1.2171	9.4300e- 003	1.2266	0.3229	8.6800e- 003	0.3315		1,061.381 8	1,061.381 8	0.0264		1,062.041 0
Total	0.4734	0.2743	3.3220	0.0107	1.2171	9.4300e- 003	1.2266	0.3229	8.6800e- 003	0.3315		1,061.381 8	1,061.381 8	0.0264		1,062.041 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Archit. Coating	236.4115					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443
Total	236.5923	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.7 Architectural Coating - 2024 Mitigated Construction Off-Site

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.4734	0.2743	3.3220	0.0107	1.2171	9.4300e- 003	1.2266	0.3229	8.6800e- 003	0.3315		1,061.381 8	1,061.381 8	0.0264		1,062.041 0
Total	0.4734	0.2743	3.3220	0.0107	1.2171	9.4300e- 003	1.2266	0.3229	8.6800e- 003	0.3315		1,061.381 8	1,061.381 8	0.0264		1,062.041 0

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 28 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/i	day							lb/c	day		
Mitigated	9.5233	45.9914	110.0422	0.4681	45.9592	0.3373	46.2965	12.2950	0.3132	12.6083		47,917.80 05	47,917.80 05	2.1953		47,972.68 39
Unmitigated	9.5233	45.9914	110.0422	0.4681	45.9592	0.3373	46.2965	12.2950	0.3132	12.6083		47,917.80 05	47,917.80 05	2.1953		47,972.68 39

4.2 Trip Summary Information

	Ave	rage Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Low Rise	145.75	154.25	154.00	506,227	506,227
Apartments Mid Rise	4,026.75	3,773.25	4075.50	13,660,065	13,660,065
General Office Building	288.45	62.55	31.05	706,812	706,812
High Turnover (Sit Down Restaurant)	2,368.80	2,873.52	2817.72	3,413,937	3,413,937
Hotel	192.00	187.50	160.00	445,703	445,703
Quality Restaurant	501.12	511.92	461.20	707,488	707,488
Regional Shopping Center	528.08	601.44	357.84	1,112,221	1,112,221
Total	8,050.95	8,164.43	8,057.31	20,552,452	20,552,452

4.3 Trip Type Information

Page 29 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Low Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	- 11	3
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
High Turnover (Sit Down	16.60	8.40	6.90	8.50	72.50	19.00	37	20	43
Hotel	16.60	8.40	6.90	19.40	61.60	19.00	58	38	4
Quality Restaurant	16.60	8.40	6.90	12.00	69.00	19.00	38	18	44
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	МН
Apartments Low Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Apartments Mid Rise	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
General Office Building	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
High Turnover (Sit Down Restaurant)	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Hotel	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Quality Restaurant	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.000821
Regional Shopping Center	0.543088	0.044216	0.209971	0.116369	0.014033	0.006332	0.021166	0.033577	0.002613	0.001817	0.005285	0.000712	0.00082

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Page 30 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
NaturalGas Mitigated	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7
NaturalGas Unmitigated	0.7660	6.7462	4.2573	0.0418		0.5292	0.5292	[0.5292	0.5292	:	8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7

CalEEMod Version: CalEEMod.2016.3.2 Page 31 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	lay		
Apartments Low Rise	1119.16	0.0121	0.1031	0.0439	6.6000e- 004		8.3400e- 003	8.3400e- 003		8.3400e- 003	8.3400e- 003		131.6662	131.6662	2.5200e- 003	2.4100e- 003	132.4486
Apartments Mid Rise	35784.3	0.3859	3.2978	1.4033	0.0211		0.2666	0.2666		0.2666	0.2666		4,209.916 4	4,209.916 4	0.0807	0.0772	4,234.933 9
General Office Building	1283.42	0.0138	0.1258	0.1057	7.5000e- 004		9.5600e- 003	9.5600e- 003		9.5600e- 003	9.5600e- 003		150.9911	150.9911	2.8900e- 003	2.7700e- 003	151.8884
High Turnover (Sit Down Restaurant)		0.2455	2.2314	1.8743	0.0134		0.1696	0.1696		0.1696	0.1696		2,677.634 2	2,677.634 2	0.0513	0.0491	2,693.546 0
Hotel	4769.72	0.0514	0.4676	0.3928	2.8100e- 003		0.0355	0.0355		0.0355	0.0355		561.1436	561.1436	0.0108	0.0103	564.4782
Quality Restaurant	5057.75	0.0545	0.4959	0.4165	2.9800e- 003		0.0377	0.0377		0.0377	0.0377		595.0298	595.0298	0.0114	0.0109	598.5658
Regional Shopping Center		2.7100e- 003	0.0247	0.0207	1.5000e- 004		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003		29.6019	29.6019	5.7000e- 004	5.4000e- 004	29.7778
Total		0.7660	6.7463	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7

CalEEMod Version: CalEEMod.2016.3.2 Page 32 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

5.2 Energy by Land Use - NaturalGas Mitigated

s Use	ROG	NOx	co	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
kBTU/yr					lb/	day							lb/c	lay		
1.11916	0.0121	0.1031	0.0439	6.6000e- 004		8.3400e- 003	8.3400e- 003		8.3400e- 003	8.3400e- 003		131.6662	131.6662	2.5200e- 003	2.4100e- 003	132.4486
35.7843	0.3859	3.2978	1.4033	0.0211		0.2666	0.2666		0.2666	0.2666		4,209.916 4	4,209.916 4	0.0807	0.0772	4,234.933 9
1.28342	0.0138	0.1258	0.1057	7.5000e- 004		9.5600e- 003	9.5600e- 003		9.5600e- 003	9.5600e- 003		150.9911	150.9911	2.8900e- 003	2.7700e- 003	151.8884
22.7599	0.2455	2.2314	1.8743	0.0134		0.1696	0.1696		0.1696	0.1696		2,677.634 2	2,677.634 2	0.0513	0.0491	2,693.546 0
4.76972	0.0514	0.4676	0.3928	2.8100e- 003		0.0355	0.0355		0.0355	0.0355		561.1436	561.1436	0.0108	0.0103	564.4782
5.05775	0.0545	0.4959	0.4165	2.9800e- 003		0.0377	0.0377		0.0377	0.0377		595.0298	595.0298	0.0114	0.0109	598.5658
0.251616	2.7100e- 003	0.0247	0.0207	1.5000e- 004		1.8700e- 003	1.8700e- 003		1.8700e- 003	1.8700e- 003		29.6019	29.6019	5.7000e- 004	5.4000e- 004	29.7778
Ï	0.7660	6.7463	4.2573	0.0418		0.5292	0.5292		0.5292	0.5292		8,355.983 2	8,355.983 2	0.1602	0.1532	8,405.638 7
1 2 2	1.11916 1.11916 35.7843 1.28342 22.7599 4.76972 5.05775	KBTUyr 1.11916 0.0121 35.7843 0.3859 1.28342 0.0138 22.7599 0.2455 4.76972 0.0514 5.05775 0.0545 2.21006-003	KBTUlyr 1.11916	KBTUyr 1.11916 0.0121 0.1031 0.0439 35.7843 0.3859 3.2978 1.4033 1.28342 0.0138 0.1258 0.1057 22.7599 0.2455 2.2314 1.8743 4.76972 0.0514 0.4676 0.3928 5.05775 0.0545 0.4959 0.4165 0.251616 2.7100e 0.0247 0.0207	KBTUyr 1.11916 0.0121 0.1031 0.0439 6.6000e-004 35.7843 0.3859 3.2978 1.4033 0.0211 1.28342 0.0138 0.1258 0.1057 7.5000e-004 22.7599 0.2455 2.2314 1.8743 0.0134 4.76972 0.0514 0.4676 0.3928 2.8100e-003 5.05775 0.0545 0.4959 0.4165 2.9800e-003	National Color	KBTUlyr Ibday 1.11916 0.0121 0.1031 0.0439 6.6000e- 004 003 35.7843 0.3859 3.2978 1.4033 0.0211 0.2666 1.28342 0.0138 0.1258 0.1057 7.5000e- 0.04 22.7599 0.2455 2.2314 1.8749 0.0134 0.1696 4.76972 0.0514 0.4676 0.3928 2.8100e- 003 5.05775 0.0545 0.4959 0.4165 2.9800e- 0.0377 0.251616 2.7100e- 0.0247 0.0207 1.5000e- 0.03 0.03	1.11916	1.11916	National Color	1.11916	1.11916	National Color	KBTUlyr	1.11916 0.0121 0.1031 0.0439 6.6000e- 0.83400e- 0.033 0.3400e- 0.3400e	1.11916 0.0121 0.1031 0.0439 6.6000e 0.83400e 0.033 0.33400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.3400e 0.033 0.0211 0.26666 0.2666 0.2666 0.2666 0.26666 0.26666 0.26666 0.26666 0

6.0 Area Detail

6.1 Mitigation Measures Area

Page 33 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/i	day							lb/c	iay		
Mitigated	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92
Unmitigated	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

6.2 Area by SubCategory Unmitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/	day							lb/c	iay		
Architectural Coating	2.2670					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	24.1085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	1.6500	14.1000	6.0000	0.0900		1.1400	1.1400		1.1400	1.1400	0.0000	18,000.00 00	18,000.00 00	0.3450	0.3300	18,106.9 50
Landscaping	2.4766	0.9496	82.4430	4.3600e- 003		0.4574	0.4574		0.4574	0.4574		148.5950	148.5950	0.1424		152.1542
Total	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

Page 34 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

6.2 Area by SubCategory Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory			3		lb/	day							lb/c	day		
Architectural Coating	2.2670					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	24.1085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	1.6500	14.1000	6.0000	0.0900		1.1400	1.1400		1.1400	1.1400	0.0000	18,000.00 00	18,000.00 00	0.3450	0.3300	18,106.96 50
Landscaping	2.4766	0.9496	82.4430	4.3600e- 003		0.4574	0.4574		0.4574	0.4574		148.5950	148.5950	0.1424		152.1542
Total	30.5020	15.0496	88.4430	0.0944		1.5974	1.5974		1.5974	1.5974	0.0000	18,148.59 50	18,148.59 50	0.4874	0.3300	18,259.11 92

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

No.					100	
Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

CalEEMod Version: CalEEMod.2016.3.2 Page 35 of 35 Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>					20	
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	ĺ
Jser Defined Equipment		_				
Equipment Type	Number	1				

11.0 Vegetation

Attachment C

Local Hire Provision Net Change	
Without Local Hire Provision	
Total Construction GHG Emissions (MT CO2e)	3,623
Amortized (MT CO2e/year)	120.77
With Local Hire Provision	
Total Construction GHG Emissions (MT CO2e)	3,024
Amortized (MT CO2e/year)	100.80
% Decrease in Construction-related GHG Emissions	17%

EXHIBIT B

SOIL WATER AIR PROTECTION ENTERPRISE

2656 29th Street, Suite 201 Santa Monica, California 90405 Attn: Paul Rosenfeld, Ph.D. Mobil: (310) 795-2335 Office: (310) 452-5555 Fax: (310) 452-5555 Email: prosenfeld@swape.com

Paul Rosenfeld, Ph.D.

Chemical Fate and Transport & Air Dispersion Modeling

Principal Environmental Chemist

Risk Assessment & Remediation Specialist

Education

Ph.D. Soil Chemistry, University of Washington, 1999. Dissertation on volatile organic compound filtration.

M.S. Environmental Science, U.C. Berkeley, 1995. Thesis on organic waste economics.

B.A. Environmental Studies, U.C. Santa Barbara, 1991. Thesis on wastewater treatment.

Professional Experience

Dr. Rosenfeld has over 25 years' experience conducting environmental investigations and risk assessments for evaluating impacts to human health, property, and ecological receptors. His expertise focuses on the fate and transport of environmental contaminants, human health risk, exposure assessment, and ecological restoration. Dr. Rosenfeld has evaluated and modeled emissions from unconventional oil drilling operations, oil spills, landfills, boilers and incinerators, process stacks, storage tanks, confined animal feeding operations, and many other industrial and agricultural sources. His project experience ranges from monitoring and modeling of pollution sources to evaluating impacts of pollution on workers at industrial facilities and residents in surrounding communities.

Dr. Rosenfeld has investigated and designed remediation programs and risk assessments for contaminated sites containing lead, heavy metals, mold, bacteria, particulate matter, petroleum hydrocarbons, chlorinated solvents, pesticides, radioactive waste, dioxins and furans, semi- and volatile organic compounds, PCBs, PAHs, perchlorate, asbestos, per- and poly-fluoroalkyl substances (PFOA/PFOS), unusual polymers, fuel oxygenates (MTBE), among other pollutants. Dr. Rosenfeld also has experience evaluating greenhouse gas emissions from various projects and is an expert on the assessment of odors from industrial and agricultural sites, as well as the evaluation of odor nuisance impacts and technologies for abatement of odorous emissions. As a principal scientist at SWAPE, Dr. Rosenfeld directs air dispersion modeling and exposure assessments. He has served as an expert witness and testified about pollution sources causing nuisance and/or personal injury at dozens of sites and has testified as an expert witness on more than ten cases involving exposure to air contaminants from industrial sources.

Paul E. Rosenfeld, Ph.D. Page 1 of 10 June 2019

Professional History:

Soil Water Air Protection Enterprise (SWAPE); 2003 to present; Principal and Founding Partner

UCLA School of Public Health; 2007 to 2011; Lecturer (Assistant Researcher)

UCLA School of Public Health; 2003 to 2006; Adjunct Professor

UCLA Environmental Science and Engineering Program; 2002-2004; Doctoral Intern Coordinator

UCLA Institute of the Environment, 2001-2002; Research Associate

Komex H₂O Science, 2001 to 2003; Senior Remediation Scientist

National Groundwater Association, 2002-2004; Lecturer

San Diego State University, 1999-2001; Adjunct Professor

Anteon Corp., San Diego, 2000-2001; Remediation Project Manager

Ogden (now Amec), San Diego, 2000-2000; Remediation Project Manager

Bechtel, San Diego, California, 1999 - 2000; Risk Assessor

King County, Seattle, 1996 - 1999; Scientist

James River Corp., Washington, 1995-96; Scientist

Big Creek Lumber, Davenport, California, 1995; Scientist

Plumas Corp., California and USFS, Tahoe 1993-1995; Scientist

Peace Corps and World Wildlife Fund, St. Kitts, West Indies, 1991-1993; Scientist

Publications:

Remy, L.L., Clay T., Byers, V., Rosenfeld P. E. (2019) Hospital, Health, and Community Burden After Oil Refinery Fires, Richmond, California 2007 and 2012. *Environmental Health*. 18:48

Simons, R.A., Seo, Y. Rosenfeld, P., (2015) Modeling the Effect of Refinery Emission On Residential Property Value. Journal of Real Estate Research. 27(3):321-342

Chen, J. A, Zapata A. R., Sutherland A. J., Molmen, D.R., Chow, B. S., Wu, L. E., Rosenfeld, P. E., Hesse, R. C., (2012) Sulfur Dioxide and Volatile Organic Compound Exposure To A Community In Texas City Texas Evaluated Using Aermod and Empirical Data. *American Journal of Environmental Science*, 8(6), 622-632.

Rosenfeld, P.E. & Feng, L. (2011). The Risks of Hazardous Waste. Amsterdam: Elsevier Publishing.

Cheremisinoff, N.P., & Rosenfeld, P.E. (2011). Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Agrochemical Industry, Amsterdam: Elsevier Publishing.

Gonzalez, J., Feng, L., Sutherland, A., Waller, C., Sok, H., Hesse, R., Rosenfeld, P. (2010). PCBs and Dioxins/Furans in Attic Dust Collected Near Former PCB Production and Secondary Copper Facilities in Sauget, IL. *Procedia Environmental Sciences*. 113–125.

Feng, L., Wu, C., Tam, L., Sutherland, A.J., Clark, J.J., Rosenfeld, P.E. (2010). Dioxin and Furan Blood Lipid and Attic Dust Concentrations in Populations Living Near Four Wood Treatment Facilities in the United States. *Journal of Environmental Health*. 73(6), 34-46.

Cheremisinoff, N.P., & Rosenfeld, P.E. (2010). Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Wood and Paper Industries. Amsterdam: Elsevier Publishing.

Cheremisinoff, N.P., & Rosenfeld, P.E. (2009). Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Petroleum Industry. Amsterdam: Elsevier Publishing.

Wu, C., Tam, L., Clark, J., Rosenfeld, P. (2009). Dioxin and furan blood lipid concentrations in populations living near four wood treatment facilities in the United States. WIT Transactions on Ecology and the Environment, Air Pollution, 123 (17), 319-327.

Paul E. Rosenfeld, Ph.D. Page 2 of 10 June 2019

Tam L. K.., Wu C. D., Clark J. J. and **Rosenfeld, P.E.** (2008). A Statistical Analysis Of Attic Dust And Blood Lipid Concentrations Of Tetrachloro-p-Dibenzodioxin (TCDD) Toxicity Equivalency Quotients (TEQ) In Two Populations Near Wood Treatment Facilities. *Organohalogen Compounds*, 70, 002252-002255.

Tam L. K.., Wu C. D., Clark J. J. and Rosenfeld, P.E. (2008). Methods For Collect Samples For Assessing Dioxins And Other Environmental Contaminants In Attic Dust: A Review. *Organohalogen Compounds*, 70, 000527-000530.

Hensley, A.R. A. Scott, J. J. Clark, Rosenfeld, P.E. (2007). Attic Dust and Human Blood Samples Collected near a Former Wood Treatment Facility. *Environmental Research*. 105, 194-197.

Rosenfeld, P.E., J. J. J. Clark, A. R. Hensley, M. Suffet. (2007). The Use of an Odor Wheel Classification for Evaluation of Human Health Risk Criteria for Compost Facilities. *Water Science & Technology* 55(5), 345-357.

Rosenfeld, P. E., M. Suffet. (2007). The Anatomy Of Odour Wheels For Odours Of Drinking Water, Wastewater, Compost And The Urban Environment. *Water Science & Technology* 55(5), 335-344.

Sullivan, P. J. Clark, J.J.J., Agardy, F. J., Rosenfeld, P.E. (2007). Toxic Legacy, Synthetic Toxins in the Food, Water, and Air in American Cities. Boston Massachusetts: Elsevier Publishing

Rosenfeld, P.E., and Suffet I.H. (2004). Control of Compost Odor Using High Carbon Wood Ash. Water Science and Technology, 49(9),171-178.

Rosenfeld P. E., J.J. Clark, I.H. (Mel) Suffet (2004). The Value of An Odor-Quality-Wheel Classification Scheme For The Urban Environment. *Water Environment Federation's Technical Exhibition and Conference (WEFTEC)* 2004. New Orleans, October 2-6, 2004.

Rosenfeld, P.E., and Suffet, I.H. (2004). Understanding Odorants Associated With Compost, Biomass Facilities, and the Land Application of Biosolids. *Water Science and Technology*, 49(9), 193-199.

Rosenfeld, P.E., and Suffet I.H. (2004). Control of Compost Odor Using High Carbon Wood Ash, Water Science and Technology, 49(9), 171-178.

Rosenfeld, P. E., Grey, M. A., Sellew, P. (2004). Measurement of Biosolids Odor and Odorant Emissions from Windrows, Static Pile and Biofilter. *Water Environment Research*. 76(4), 310-315.

Rosenfeld, P.E., Grey, M and Suffet, M. (2002). Compost Demonstration Project, Sacramento California Using High-Carbon Wood Ash to Control Odor at a Green Materials Composting Facility. *Integrated Waste Management Board Public Affairs Office*, Publications Clearinghouse (MS–6), Sacramento, CA Publication #442-02-008.

Rosenfeld, P.E., and C.L. Henry. (2001). Characterization of odor emissions from three different biosolids. *Water Soil and Air Pollution*. 127(1-4), 173-191.

Rosenfeld, P.E., and Henry C. L., (2000). Wood ash control of odor emissions from biosolids application. *Journal of Environmental Quality*. 29, 1662-1668.

Rosenfeld, P.E., C.L. Henry and D. Bennett. (2001). Wastewater dewatering polymer affect on biosolids odor emissions and microbial activity. *Water Environment Research*. 73(4), 363-367.

Rosenfeld, P.E., and C.L. Henry. (2001). Activated Carbon and Wood Ash Sorption of Wastewater, Compost, and Biosolids Odorants. *Water Environment Research*, 73, 388-393.

Rosenfeld, P.E., and Henry C. L., (2001). High carbon wood ash effect on biosolids microbial activity and odor. *Water Environment Research*. 131(1-4), 247-262.

Paul E. Rosenfeld, Ph.D. Page 3 of 10 June 2019

Chollack, T. and P. Rosenfeld. (1998). Compost Amendment Handbook For Landscaping. Prepared for and distributed by the City of Redmond, Washington State.

Rosenfeld, P. E. (1992). The Mount Liamuiga Crater Trail. Heritage Magazine of St. Kitts, 3(2).

Rosenfeld, P. E. (1993). High School Biogas Project to Prevent Deforestation On St. Kitts. *Biomass Users Network*, 7(1).

Rosenfeld, P. E. (1998). Characterization, Quantification, and Control of Odor Emissions From Biosolids Application To Forest Soil. Doctoral Thesis. University of Washington College of Forest Resources.

Rosenfeld, P. E. (1994). Potential Utilization of Small Diameter Trees on Sierra County Public Land. Masters thesis reprinted by the Sierra County Economic Council. Sierra County, California.

Rosenfeld, P. E. (1991). How to Build a Small Rural Anaerobic Digester & Uses Of Biogas In The First And Third World. Bachelors Thesis. University of California.

Presentations:

Rosenfeld, P.E., Sutherland, A; Hesse, R.; Zapata, A. (October 3-6, 2013). Air dispersion modeling of volatile organic emissions from multiple natural gas wells in Decatur, TX. 44th Western Regional Meeting, American Chemical Society. Lecture conducted from Santa Clara, CA.

Sok, H.L.; Waller, C.C.; Feng, L.; Gonzalez, J.; Sutherland, A.J.; Wisdom-Stack, T.; Sahai, R.K.; Hesse, R.C.; Rosenfeld, P.E. (June 20-23, 2010). Atrazine: A Persistent Pesticide in Urban Drinking Water. Urban Environmental Pollution. Lecture conducted from Boston, MA.

Feng, L.; Gonzalez, J.; Sok, H.L.; Sutherland, A.J.; Waller, C.C.; Wisdom-Stack, T.; Sahai, R.K.; La, M.; Hesse, R.C.; Rosenfeld, P.E. (June 20-23, 2010). Bringing Environmental Justice to East St. Louis, Illinois. *Urban Environmental Pollution*. Lecture conducted from Boston, MA.

Rosenfeld, P.E. (April 19-23, 2009). Perfluoroctanoic Acid (PFOA) and Perfluorocatane Sulfonate (PFOS) Contamination in Drinking Water From the Use of Aqueous Film Forming Foams (AFFF) at Airports in the United States. 2009 Ground Water Summit and 2009 Ground Water Protection Council Spring Meeting, Lecture conducted from Tuscon, AZ.

Rosenfeld, P.E. (April 19-23, 2009). Cost to Filter Atrazine Contamination from Drinking Water in the United States" Contamination in Drinking Water From the Use of Aqueous Film Forming Foams (AFFF) at Airports in the United States. 2009 Ground Water Summit and 2009 Ground Water Protection Council Spring Meeting. Lecture conducted from Tuscon. AZ.

Wu, C., Tam, L., Clark, J., Rosenfeld, P. (20-22 July, 2009). Dioxin and furan blood lipid concentrations in populations living near four wood treatment facilities in the United States. Brebbia, C.A. and Popov, V., eds., Air Pollution XVII: Proceedings of the Seventeenth International Conference on Modeling, Monitoring and Management of Air Pollution. Lecture conducted from Tallinn, Estonia.

Rosenfeld, P. E. (October 15-18, 2007). Moss Point Community Exposure To Contaminants From A Releasing Facility. *The 23rd Annual International Conferences on Soils Sediment and Water*. Platform lecture conducted from University of Massachusetts, Amherst MA.

Rosenfeld, P. E. (October 15-18, 2007). The Repeated Trespass of Tritium-Contaminated Water Into A Surrounding Community Form Repeated Waste Spills From A Nuclear Power Plant. *The 23rd Annual International Conferences on Soils Sediment and Water*. Platform lecture conducted from University of Massachusetts, Amherst MA.

Paul E. Rosenfeld, Ph.D. Page 4 of 10 June 2019

Rosenfeld, P. E. (October 15-18, 2007). Somerville Community Exposure To Contaminants From Wood Treatment Facility Emissions. The 23rd Annual International Conferences on Soils Sediment and Water. Lecture conducted from University of Massachusetts, Amherst MA.

Rosenfeld P. E. (March 2007). Production, Chemical Properties, Toxicology, & Treatment Case Studies of 1,2,3-Trichloropropane (TCP). *The Association for Environmental Health and Sciences (AEHS) Annual Meeting*. Lecture conducted from San Diego, CA.

Rosenfeld P. E. (March 2007). Blood and Attic Sampling for Dioxin/Furan, PAH, and Metal Exposure in Florala, Alabama. *The AEHS Annual Meeting*. Lecture conducted from San Diego, CA.

Hensley A.R., Scott, A., Rosenfeld P.E., Clark, J.J.J. (August 21 – 25, 2006). Dioxin Containing Attic Dust And Human Blood Samples Collected Near A Former Wood Treatment Facility. *The 26th International Symposium on Halogenated Persistent Organic Pollutants – DIOXIN2006*. Lecture conducted from Radisson SAS Scandinavia Hotel in Oslo Norway.

Hensley A.R., Scott, A., Rosenfeld P.E., Clark, J.J.J. (November 4-8, 2006). Dioxin Containing Attic Dust And Human Blood Samples Collected Near A Former Wood Treatment Facility. *APHA 134 Annual Meeting & Exposition*. Lecture conducted from Boston Massachusetts.

Paul Rosenfeld Ph.D. (October 24-25, 2005). Fate, Transport and Persistence of PFOA and Related Chemicals. Mealey's C8/PFOA. *Science, Risk & Litigation Conference*. Lecture conducted from The Rittenhouse Hotel, Philadelphia, PA.

Paul Rosenfeld Ph.D. (September 19, 2005). Brominated Flame Retardants in Groundwater: Pathways to Human Ingestion, *Toxicology and Remediation PEMA Emerging Contaminant Conference*. Lecture conducted from Hilton Hotel, Irvine California.

Paul Rosenfeld Ph.D. (September 19, 2005). Fate, Transport, Toxicity, And Persistence of 1,2,3-TCP. PEMA Emerging Contaminant Conference. Lecture conducted from Hilton Hotel in Irvine, California.

Paul Rosenfeld Ph.D. (September 26-27, 2005). Fate, Transport and Persistence of PDBEs. *Mealey's Groundwater Conference*. Lecture conducted from Ritz Carlton Hotel, Marina Del Ray, California.

Paul Rosenfeld Ph.D. (June 7-8, 2005). Fate, Transport and Persistence of PFOA and Related Chemicals. *International Society of Environmental Forensics: Focus On Emerging Contaminants*. Lecture conducted from Sheraton Oceanfront Hotel, Virginia Beach, Virginia.

Paul Rosenfeld Ph.D. (July 21-22, 2005). Fate Transport, Persistence and Toxicology of PFOA and Related Perfluorochemicals. 2005 National Groundwater Association Ground Water And Environmental Law Conference. Lecture conducted from Wyndham Baltimore Inner Harbor, Baltimore Maryland.

Paul Rosenfeld Ph.D. (July 21-22, 2005). Brominated Flame Retardants in Groundwater: Pathways to Human Ingestion, Toxicology and Remediation. 2005 National Groundwater Association Ground Water and Environmental Law Conference. Lecture conducted from Wyndham Baltimore Inner Harbor, Baltimore Maryland.

Paul Rosenfeld, Ph.D. and James Clark Ph.D. and Rob Hesse R.G. (May 5-6, 2004). Tert-butyl Alcohol Liability and Toxicology, A National Problem and Unquantified Liability. *National Groundwater Association. Environmental Law Conference*. Lecture conducted from Congress Plaza Hotel, Chicago Illinois.

Paul Rosenfeld, Ph.D. (March 2004). Perchlorate Toxicology. Meeting of the American Groundwater Trust. Lecture conducted from Phoenix Arizona.

Hagemann, M.F., **Paul Rosenfeld, Ph.D.** and Rob Hesse (2004). Perchlorate Contamination of the Colorado River. *Meeting of tribal representatives*. Lecture conducted from Parker, AZ.

Paul E. Rosenfeld, Ph.D. Page 5 of 10 June 2019

Paul Rosenfeld, Ph.D. (April 7, 2004). A National Damage Assessment Model For PCE and Dry Cleaners. *Drycleaner Symposium. California Ground Water Association*. Lecture conducted from Radison Hotel, Sacramento, California.

Rosenfeld, P. E., Grey, M., (June 2003) Two stage biofilter for biosolids composting odor control. Seventh International In Situ And On Site Bioremediation Symposium Battelle Conference Orlando, FL.

Paul Rosenfeld, Ph.D. and James Clark Ph.D. (February 20-21, 2003) Understanding Historical Use, Chemical Properties, Toxicity and Regulatory Guidance of 1,4 Dioxane. *National Groundwater Association. Southwest Focus Conference. Water Supply and Emerging Contaminants.*. Lecture conducted from Hyatt Regency Phoenix Arizona.

Paul Rosenfeld, Ph.D. (February 6-7, 2003). Underground Storage Tank Litigation and Remediation. *California CUPA Forum*. Lecture conducted from Marriott Hotel, Anaheim California.

Paul Rosenfeld, Ph.D. (October 23, 2002) Underground Storage Tank Litigation and Remediation. EPA Underground Storage Tank Roundtable. Lecture conducted from Sacramento California.

Rosenfeld, P.E. and Suffet, M. (October 7- 10, 2002). Understanding Odor from Compost, Wastewater and Industrial Processes. Sixth Annual Symposium On Off Flavors in the Aquatic Environment. International Water Association. Lecture conducted from Barcelona Spain.

Rosenfeld, P.E. and Suffet, M. (October 7-10, 2002). Using High Carbon Wood Ash to Control Compost Odor. Sixth Annual Symposium On Off Flavors in the Aquatic Environment. International Water Association. Lecture conducted from Barcelona Spain.

Rosenfeld, P.E. and Grey, M. A. (September 22-24, 2002). Biocycle Composting For Coastal Sage Restoration. *Northwest Biosolids Management Association*. Lecture conducted from Vancouver Washington..

Rosenfeld, P.E. and Grey, M. A. (November 11-14, 2002). Using High-Carbon Wood Ash to Control Odor at a Green Materials Composting Facility. *Soil Science Society Annual Conference*. Lecture conducted from Indianapolis, Maryland.

Rosenfeld. P.E. (September 16, 2000). Two stage biofilter for biosolids composting odor control. *Water Environment Federation*. Lecture conducted from Anaheim California.

Rosenfeld. P.E. (October 16, 2000). Wood ash and biofilter control of compost odor. *Biofest.* Lecture conducted from Ocean Shores, California.

Rosenfeld, P.E. (2000). Bioremediation Using Organic Soil Amendments. California Resource Recovery Association. Lecture conducted from Sacramento California.

Rosenfeld, P.E., C.L. Henry, R. Harrison. (1998). Oat and Grass Seed Germination and Nitrogen and Sulfur Emissions Following Biosolids Incorporation With High-Carbon Wood-Ash. Water Environment Federation 12th Annual Residuals and Biosolids Management Conference Proceedings. Lecture conducted from Bellevue Washington.

Rosenfeld, P.E., and C.L. Henry. (1999). An evaluation of ash incorporation with biosolids for odor reduction. *Soil Science Society of America*. Lecture conducted from Salt Lake City Utah.

Rosenfeld, P.E., C.L. Henry, R. Harrison. (1998). Comparison of Microbial Activity and Odor Emissions from Three Different Biosolids Applied to Forest Soil. *Brown and Caldwell*. Lecture conducted from Seattle Washington.

Rosenfeld, P.E., C.L. Henry. (1998). Characterization, Quantification, and Control of Odor Emissions from Biosolids Application To Forest Soil. *Biofest*. Lecture conducted from Lake Chelan, Washington.

Paul E. Rosenfeld, Ph.D. Page 6 of 10 June 2019

Rosenfeld, P.E, C.L. Henry, R. Harrison. (1998). Oat and Grass Seed Germination and Nitrogen and Sulfur Emissions Following Biosolids Incorporation With High-Carbon Wood-Ash. Water Environment Federation 12th Annual Residuals and Biosolids Management Conference Proceedings. Lecture conducted from Bellevue Washington.

Rosenfeld, P.E., C.L. Henry, R. B. Harrison, and R. Dills. (1997). Comparison of Odor Emissions From Three Different Biosolids Applied to Forest Soil. *Soil Science Society of America*. Lecture conducted from Anaheim California

Teaching Experience:

UCLA Department of Environmental Health (Summer 2003 through 20010) Taught Environmental Health Science 100 to students, including undergrad, medical doctors, public health professionals and nurses. Course focused on the health effects of environmental contaminants.

National Ground Water Association, Successful Remediation Technologies. Custom Course in Sante Fe, New Mexico. May 21, 2002. Focused on fate and transport of fuel contaminants associated with underground storage tanks

National Ground Water Association; Successful Remediation Technologies Course in Chicago Illinois. April 1, 2002. Focused on fate and transport of contaminants associated with Superfund and RCRA sites.

California Integrated Waste Management Board, April and May, 2001. Alternative Landfill Caps Seminar in San Diego, Ventura, and San Francisco. Focused on both prescriptive and innovative landfill cover design.

UCLA Department of Environmental Engineering, February 5, 2002. Seminar on Successful Remediation Technologies focusing on Groundwater Remediation.

University Of Washington, Soil Science Program, Teaching Assistant for several courses including: Soil Chemistry, Organic Soil Amendments, and Soil Stability.

U.C. Berkeley, Environmental Science Program Teaching Assistant for Environmental Science 10.

Academic Grants Awarded:

California Integrated Waste Management Board. \$41,000 grant awarded to UCLA Institute of the Environment. Goal: To investigate effect of high carbon wood ash on volatile organic emissions from compost. 2001.

Synagro Technologies, Corona California: \$10,000 grant awarded to San Diego State University. Goal: investigate effect of biosolids for restoration and remediation of degraded coastal sage soils. 2000.

King County, Department of Research and Technology, Washington State. \$100,000 grant awarded to University of Washington: Goal: To investigate odor emissions from biosolids application and the effect of polymers and ash on VOC emissions. 1998.

Northwest Biosolids Management Association, Washington State. \$20,000 grant awarded to investigate effect of polymers and ash on VOC emissions from biosolids. 1997.

James River Corporation, Oregon: \$10,000 grant was awarded to investigate the success of genetically engineered Poplar trees with resistance to round-up. 1996.

United State Forest Service, Tahoe National Forest: \$15,000 grant was awarded to investigating fire ecology of the Tahoe National Forest. 1995.

Kellogg Foundation, Washington D.C. \$500 grant was awarded to construct a large anaerobic digester on St. Kitts in West Indies. 1993

Paul E. Rosenfeld, Ph.D. Page 7 of 10 June 2019

Deposition and/or Trial Testimony:

In the United States District Court For The District of New Jersey

Duarte et al, Plaintiffs, vs. United States Metals Refining Company et. al. Defendant.

Case No.: 2:17-cv-01624-ES-SCM Rosenfeld Deposition. 6-7-2019

In the United States District Court of Southern District of Texas Galveston Division

M/T Carla Maersk, Plaintiffs, vs. Conti 168., Schiffahrts-GMBH & Co. Bulker KG MS "Conti Perdido"

Defendant.

Case No.: 3:15-CV-00106 consolidated with 3:15-CV-00237

Rosenfeld Deposition. 5-9-2019

In The Superior Court of the State of California In And For The County Of Los Angeles - Santa Monica

Carole-Taddeo-Bates et al., vs. Ifran Khan et al., Defendants

Case No.: No. BC615636 Rosenfeld Deposition, 1-26-2019

In The Superior Court of the State of California In And For The County Of Los Angeles - Santa Monica

The San Gabriel Valley Council of Governments et al. vs El Adobe Apts. Inc. et al., Defendants

Case No.: No. BC646857

Rosenfeld Deposition, 10-6-2018; Trial 3-7-19

In United States District Court For The District of Colorado

Bells et al. Plaintiff vs. The 3M Company et al., Defendants

Case: No 1:16-cv-02531-RBJ

Rosenfeld Deposition, 3-15-2018 and 4-3-2018

In The District Court Of Regan County, Texas, 112th Judicial District

Phillip Bales et al., Plaintiff vs. Dow Agrosciences, LLC, et al., Defendants

Cause No 1923

Rosenfeld Deposition, 11-17-2017

In The Superior Court of the State of California In And For The County Of Contra Costa

Simons et al., Plaintiffs vs. Chevron Corporation, et al., Defendants

Cause No C12-01481

Rosenfeld Deposition, 11-20-2017

In The Circuit Court Of The Twentieth Judicial Circuit, St Clair County, Illinois

Martha Custer et al., Plaintiff vs. Cerro Flow Products, Inc., Defendants

Case No.: No. 0i9-L-2295 Rosenfeld Deposition, 8-23-2017

In The Superior Court of the State of California, For The County of Los Angeles

Warrn Gilbert and Penny Gilber, Plaintiff vs. BMW of North America LLC

Case No.: LC102019 (c/w BC582154)

Rosenfeld Deposition, 8-16-2017, Trail 8-28-2018

In the Northern District Court of Mississippi, Greenville Division

Brenda J. Cooper, et al., Plaintiffs, vs. Meritor Inc., et al., Defendants

Case Number: 4:16-cv-52-DMB-JVM

Rosenfeld Deposition: July 2017

Paul E. Rosenfeld, Ph.D. Page 8 of 10 June 2019

In The Superior Court of the State of Washington, County of Snohomish

Michael Davis and Julie Davis et al., Plaintiff vs. Cedar Grove Composting Inc., Defendants

Case No.: No. 13-2-03987-5

Rosenfeld Deposition, February 2017

Trial, March 2017

In The Superior Court of the State of California, County of Alameda

Charles Spain., Plaintiff vs. Thermo Fisher Scientific, et al., Defendants

Case No.: RG14711115

Rosenfeld Deposition, September 2015

In The Iowa District Court In And For Poweshiek County

Russell D. Winburn, et al., Plaintiffs vs. Doug Hoksbergen, et al., Defendants

Case No.: LALA002187

Rosenfeld Deposition, August 2015

In The Iowa District Court For Wapello County

Jerry Dovico, et al., Plaintiffs vs. Valley View Sine LLC, et al., Defendants

Law No,: LALA105144 - Division A

Rosenfeld Deposition, August 2015

In The Iowa District Court For Wapello County

Doug Pauls, et al., et al., Plaintiffs vs. Richard Warren, et al., Defendants

Law No,: LALA105144 - Division A Rosenfeld Deposition, August 2015

In The Circuit Court of Ohio County, West Virginia

Robert Andrews, et al. v. Antero, et al.

Civil Action No. 14-C-30000 Rosenfeld Deposition, June 2015

In The Third Judicial District County of Dona Ana, New Mexico

Betty Gonzalez, et al. Plaintiffs vs. Del Oro Dairy, Del Oro Real Estate LLC, Jerry Settles and Deward

DeRuyter, Defendants

Rosenfeld Deposition: July 2015

In The Iowa District Court For Muscatine County

Laurie Freeman et. al. Plaintiffs vs. Grain Processing Corporation, Defendant

Case No 4980

Rosenfeld Deposition: May 2015

In the Circuit Court of the 17th Judicial Circuit, in and For Broward County, Florida

Walter Hinton, et. al. Plaintiff, vs. City of Fort Lauderdale, Florida, a Municipality, Defendant.

Case Number CACE07030358 (26)

Rosenfeld Deposition: December 2014

In the United States District Court Western District of Oklahoma

Tommy McCarty, et al., Plaintiffs, v. Oklahoma City Landfill, LLC d/b/a Southeast Oklahoma City

Landfill, et al. Defendants.

Case No. 5:12-cv-01152-C

Rosenfeld Deposition: July 2014

Paul E. Rosenfeld, Ph.D. Page 9 of 10 June 2019

In the County Court of Dallas County Texas

Lisa Parr et al, *Plaintiff*, vs. Aruba et al, *Defendant*. Case Number cc-11-01650-E

Rosenfeld Deposition: March and September 2013

Rosenfeld Trial: April 2014

In the Court of Common Pleas of Tuscarawas County Ohio

John Michael Abicht, et al., *Plaintiffs*, vs. Republic Services, Inc., et al., *Defendants* Case Number: 2008 CT 10 0741 (Cons. w/ 2009 CV 10 0987)

Rosenfeld Deposition: October 2012

In the United States District Court of Southern District of Texas Galveston Division

Kyle Cannon, Eugene Donovan, Genaro Ramirez, Carol Sassler, and Harvey Walton, each Individually and

on behalf of those similarly situated, Plaintiffs, vs. BP Products North America, Inc., Defendant.

Case 3:10-cv-00622

Rosenfeld Deposition: February 2012

Rosenfeld Trial: April 2013

In the Circuit Court of Baltimore County Maryland

Philip E. Cvach, II et al., *Plaintiffs* vs. Two Farms, Inc. d/b/a Royal Farms, Defendants Case Number: 03-C-12-012487 OT

Rosenfeld Deposition: September 2013

Paul E. Rosenfeld, Ph.D. Page 10 of 10 June 2019

EXHIBIT C

1640 5th St.., Suite 204 Santa Santa Monica, California 90401 Tel: (949) 887-9013

Email: mhagemann@swape.com

Matthew F. Hagemann, P.G., C.Hg., QSD, QSP

Geologic and Hydrogeologic Characterization Industrial Stormwater Compliance Investigation and Remediation Strategies Litigation Support and Testifying Expert CEQA Review

Education:

M.S. Degree, Geology, California State University Los Angeles, Los Angeles, CA, 1984. B.A. Degree, Geology, Humboldt State University, Arcata, CA, 1982.

Professional Certifications:

California Professional Geologist California Certified Hydrogeologist Qualified SWPPP Developer and Practitioner

Professional Experience:

Matt has 25 years of experience in environmental policy, assessment and remediation. He spent nine years with the U.S. EPA in the RCRA and Superfund programs and served as EPA's Senior Science Policy Advisor in the Western Regional Office where he identified emerging threats to groundwater from perchlorate and MTBE. While with EPA, Matt also served as a Senior Hydrogeologist in the oversight of the assessment of seven major military facilities undergoing base closure. He led numerous enforcement actions under provisions of the Resource Conservation and Recovery Act (RCRA) while also working with permit holders to improve hydrogeologic characterization and water quality monitoring.

Matt has worked closely with U.S. EPA legal counsel and the technical staff of several states in the application and enforcement of RCRA, Safe Drinking Water Act and Clean Water Act regulations. Matt has trained the technical staff in the States of California, Hawaii, Nevada, Arizona and the Territory of Guam in the conduct of investigations, groundwater fundamentals, and sampling techniques.

Positions Matt has held include:

- Founding Partner, Soil/Water/Air Protection Enterprise (SWAPE) (2003 present);
- Geology Instructor, Golden West College, 2010 2014;
- Senior Environmental Analyst, Komex H2O Science, Inc. (2000 -- 2003);

- Executive Director, Orange Coast Watch (2001 2004);
- Senior Science Policy Advisor and Hydrogeologist, U.S. Environmental Protection Agency (1989– 1998);
- Hydrogeologist, National Park Service, Water Resources Division (1998 2000);
- Adjunct Faculty Member, San Francisco State University, Department of Geosciences (1993 1998):
- Instructor, College of Marin, Department of Science (1990 1995);
- Geologist, U.S. Forest Service (1986 1998); and
- Geologist, Dames & Moore (1984 1986).

Senior Regulatory and Litigation Support Analyst:

With SWAPE, Matt's responsibilities have included:

- Lead analyst and testifying expert in the review of over 100 environmental impact reports
 since 2003 under CEQA that identify significant issues with regard to hazardous waste, water
 resources, water quality, air quality, Valley Fever, greenhouse gas emissions, and geologic
 hazards. Make recommendations for additional mitigation measures to lead agencies at the
 local and county level to include additional characterization of health risks and
 implementation of protective measures to reduce worker exposure to hazards from toxins
 and Valley Fever.
- · Stormwater analysis, sampling and best management practice evaluation at industrial facilities.
- Manager of a project to provide technical assistance to a community adjacent to a former Naval shipyard under a grant from the U.S. EPA.
- Technical assistance and litigation support for vapor intrusion concerns.
- Lead analyst and testifying expert in the review of environmental issues in license applications for large solar power plants before the California Energy Commission.
- · Manager of a project to evaluate numerous formerly used military sites in the western U.S.
- Manager of a comprehensive evaluation of potential sources of perchlorate contamination in Southern California drinking water wells.
- Manager and designated expert for litigation support under provisions of Proposition 65 in the review of releases of gasoline to sources drinking water at major refineries and hundreds of gas stations throughout California.
- · Expert witness on two cases involving MTBE litigation.
- Expert witness and litigation support on the impact of air toxins and hazards at a school.
- · Expert witness in litigation at a former plywood plant.

With Komex H2O Science Inc., Matt's duties included the following:

- Senior author of a report on the extent of perchlorate contamination that was used in testimony by the former U.S. EPA Administrator and General Counsel.
- Senior researcher in the development of a comprehensive, electronically interactive chronology of MTBE use, research, and regulation.
- Senior researcher in the development of a comprehensive, electronically interactive chronology
 of perchlorate use, research, and regulation.
- Senior researcher in a study that estimates nationwide costs for MTBE remediation and drinking
 water treatment, results of which were published in newspapers nationwide and in testimony
 against provisions of an energy bill that would limit liability for oil companies.
- Research to support litigation to restore drinking water supplies that have been contaminated by MTBE in California and New York.

- Expert witness testimony in a case of oil production-related contamination in Mississippi.
- Lead author for a multi-volume remedial investigation report for an operating school in Los Angeles that met strict regulatory requirements and rigorous deadlines.

3

 Development of strategic approaches for cleanup of contaminated sites in consultation with clients and regulators.

Executive Director:

As Executive Director with Orange Coast Watch, Matt led efforts to restore water quality at Orange County beaches from multiple sources of contamination including urban runoff and the discharge of wastewater. In reporting to a Board of Directors that included representatives from leading Orange County universities and businesses, Matt prepared issue papers in the areas of treatment and disinfection of wastewater and control of the discharge of grease to sewer systems. Matt actively participated in the development of countywide water quality permits for the control of urban runoff and permits for the discharge of wastewater. Matt worked with other nonprofits to protect and restore water quality, including Surfrider, Natural Resources Defense Council and Orange County CoastKeeper as well as with business institutions including the Orange County Business Council.

Hydrogeology:

As a Senior Hydrogeologist with the U.S. Environmental Protection Agency, Matt led investigations to characterize and cleanup closing military bases, including Mare Island Naval Shipyard, Hunters Point Naval Shipyard, Treasure Island Naval Station, Alameda Naval Station, Moffett Field, Mather Army Airfield, and Sacramento Army Depot. Specific activities were as follows:

- Led efforts to model groundwater flow and contaminant transport, ensured adequacy of
 monitoring networks, and assessed cleanup alternatives for contaminated sediment, soil, and
 groundwater.
- Initiated a regional program for evaluation of groundwater sampling practices and laboratory analysis at military bases.
- Identified emerging issues, wrote technical guidance, and assisted in policy and regulation development through work on four national U.S. EPA workgroups, including the Superfund Groundwater Technical Forum and the Federal Facilities Forum.

At the request of the State of Hawaii, Matt developed a methodology to determine the vulnerability of groundwater to contamination on the islands of Maui and Oahu. He used analytical models and a GIS to show zones of vulnerability, and the results were adopted and published by the State of Hawaii and County of Maui.

As a hydrogeologist with the EPA Groundwater Protection Section, Matt worked with provisions of the Safe Drinking Water Act and NEPA to prevent drinking water contamination. Specific activities included the following:

- Received an EPA Bronze Medal for his contribution to the development of national guidance for the protection of drinking water.
- Managed the Sole Source Aquifer Program and protected the drinking water of two communities
 through designation under the Safe Drinking Water Act. He prepared geologic reports,
 conducted public hearings, and responded to public comments from residents who were very
 concerned about the impact of designation.

 Reviewed a number of Environmental Impact Statements for planned major developments, including large hazardous and solid waste disposal facilities, mine reclamation, and water transfer.

Matt served as a hydrogeologist with the RCRA Hazardous Waste program. Duties were as follows:

- Supervised the hydrogeologic investigation of hazardous waste sites to determine compliance with Subtitle C requirements.
- Reviewed and wrote "part B" permits for the disposal of hazardous waste.
- Conducted RCRA Corrective Action investigations of waste sites and led inspections that formed
 the basis for significant enforcement actions that were developed in close coordination with U.S.
 EPA legal counsel.
- · Wrote contract specifications and supervised contractor's investigations of waste sites.

With the National Park Service, Matt directed service-wide investigations of contaminant sources to prevent degradation of water quality, including the following tasks:

- Applied pertinent laws and regulations including CERCLA, RCRA, NEPA, NRDA, and the Clean Water Act to control military, mining, and landfill contaminants.
- Conducted watershed-scale investigations of contaminants at parks, including Yellowstone and Olympic National Park.
- Identified high-levels of perchlorate in soil adjacent to a national park in New Mexico and advised park superintendent on appropriate response actions under CERCLA.
- Served as a Park Service representative on the Interagency Perchlorate Steering Committee, a national workgroup.
- Developed a program to conduct environmental compliance audits of all National Parks while serving on a national workgroup.
- Co-authored two papers on the potential for water contamination from the operation of personal
 watercraft and snowmobiles, these papers serving as the basis for the development of nationwide policy on the use of these vehicles in National Parks.
- Contributed to the Federal Multi-Agency Source Water Agreement under the Clean Water Action Plan.

Policy:

Served senior management as the Senior Science Policy Advisor with the U.S. Environmental Protection Agency, Region 9. Activities included the following:

- Advised the Regional Administrator and senior management on emerging issues such as the
 potential for the gasoline additive MTBE and ammonium perchlorate to contaminate drinking
 water supplies.
- Shaped EPA's national response to these threats by serving on workgroups and by contributing
 to guidance, including the Office of Research and Development publication, Oxygenates in
 Water: Critical Information and Research Needs.
- · Improved the technical training of EPA's scientific and engineering staff.
- Earned an EPA Bronze Medal for representing the region's 300 scientists and engineers in negotiations with the Administrator and senior management to better integrate scientific principles into the policy-making process.
- Established national protocol for the peer review of scientific documents.

Geology:

With the U.S. Forest Service, Matt led investigations to determine hillslope stability of areas proposed for timber harvest in the central Oregon Coast Range. Specific activities were as follows:

- Mapped geology in the field, and used aerial photographic interpretation and mathematical models to determine slope stability.
- Coordinated his research with community members who were concerned with natural resource protection.
- Characterized the geology of an aquifer that serves as the sole source of drinking water for the city of Medford, Oregon.

As a consultant with Dames and Moore, Matt led geologic investigations of two contaminated sites (later listed on the Superfund NPL) in the Portland, Oregon, area and a large hazardous waste site in eastern Oregon. Duties included the following:

- · Supervised year-long effort for soil and groundwater sampling.
- Conducted aquifer tests.
- · Investigated active faults beneath sites proposed for hazardous waste disposal.

Teaching:

From 1990 to 1998, Matt taught at least one course per semester at the community college and university levels:

- At San Francisco State University, held an adjunct faculty position and taught courses in environmental geology, oceanography (lab and lecture), hydrogeology, and groundwater contamination.
- Served as a committee member for graduate and undergraduate students.
- · Taught courses in environmental geology and oceanography at the College of Marin.

Matt taught physical geology (lecture and lab and introductory geology at Golden West College in Huntington Beach, California from 2010 to 2014.

Invited Testimony, Reports, Papers and Presentations:

Hagemann, M.F., 2008. Disclosure of Hazardous Waste Issues under CEQA. Presentation to the Public Environmental Law Conference, Eugene, Oregon.

Hagemann, M.F., 2008. Disclosure of Hazardous Waste Issues under CEQA. Invited presentation to U.S. EPA Region 9, San Francisco, California.

Hagemann, M.F., 2005. Use of Electronic Databases in Environmental Regulation, Policy Making and Public Participation. Brownfields 2005, Denver, Coloradao.

Hagemann, M.F., 2004. Perchlorate Contamination of the Colorado River and Impacts to Drinking Water in Nevada and the Southwestern U.S. Presentation to a meeting of the American Groundwater Trust, Las Vegas, NV (served on conference organizing committee).

Hagemann, M.F., 2004. Invited testimony to a California Senate committee hearing on air toxins at schools in Southern California, Los Angeles.

Brown, A., Farrow, J., Gray, A. and **Hagemann, M.**, 2004. An Estimate of Costs to Address MTBE Releases from Underground Storage Tanks and the Resulting Impact to Drinking Water Wells. Presentation to the Ground Water and Environmental Law Conference, National Groundwater Association.

Hagemann, M.F., 2004. Perchlorate Contamination of the Colorado River and Impacts to Drinking Water in Arizona and the Southwestern U.S. Presentation to a meeting of the American Groundwater Trust, Phoenix, AZ (served on conference organizing committee).

Hagemann, M.F., 2003. Perchlorate Contamination of the Colorado River and Impacts to Drinking Water in the Southwestern U.S. Invited presentation to a special committee meeting of the National Academy of Sciences, Irvine, CA.

Hagemann, M.F., 2003. Perchlorate Contamination of the Colorado River. Invited presentation to a tribal EPA meeting, Pechanga, CA.

Hagemann, M.F., 2003. Perchlorate Contamination of the Colorado River. Invited presentation to a meeting of tribal repesentatives, Parker, AZ.

Hagemann, M.F., 2003. Impact of Perchlorate on the Colorado River and Associated Drinking Water Supplies. Invited presentation to the Inter-Tribal Meeting, Torres Martinez Tribe.

Hagemann, M.F., 2003. The Emergence of Perchlorate as a Widespread Drinking Water Contaminant. Invited presentation to the U.S. EPA Region 9.

Hagemann, M.F., 2003. A Deductive Approach to the Assessment of Perchlorate Contamination. Invited presentation to the California Assembly Natural Resources Committee.

Hagemann, M.F., 2003. Perchlorate: A Cold War Legacy in Drinking Water. Presentation to a meeting of the National Groundwater Association.

Hagemann, M.F., 2002. From Tank to Tap: A Chronology of MTBE in Groundwater. Presentation to a meeting of the National Groundwater Association.

Hagemann, M.F., 2002. A Chronology of MTBE in Groundwater and an Estimate of Costs to Address Impacts to Groundwater. Presentation to the annual meeting of the Society of Environmental Journalists.

Hagemann, M.F., 2002. An Estimate of the Cost to Address MTBE Contamination in Groundwater (and Who Will Pay). Presentation to a meeting of the National Groundwater Association.

Hagemann, M.F., 2002. An Estimate of Costs to Address MTBE Releases from Underground Storage Tanks and the Resulting Impact to Drinking Water Wells. Presentation to a meeting of the U.S. EPA and State Underground Storage Tank Program managers.

Hagemann, M.F., 2001. From Tank to Tap: A Chronology of MTBE in Groundwater. Unpublished report.

Hagemann, M.F., 2001. Estimated Cleanup Cost for MTBE in Groundwater Used as Drinking Water. Unpublished report.

Hagemann, M.F., 2001. Estimated Costs to Address MTBE Releases from Leaking Underground Storage Tanks. Unpublished report.

Hagemann, M.F., and VanMouwerik, M., 1999. Potential Water Quality Concerns Related to Snowmobile Usage. Water Resources Division, National Park Service, Technical Report.

VanMouwerik, M. and **Hagemann**, M.F. 1999, Water Quality Concerns Related to Personal Watercraft Usage. Water Resources Division, National Park Service, Technical Report.

Hagemann, M.F., 1999, Is Dilution the Solution to Pollution in National Parks? The George Wright Society Biannual Meeting, Asheville, North Carolina.

Hagemann, M.F., 1997, The Potential for MTBE to Contaminate Groundwater. U.S. EPA Superfund Groundwater Technical Forum Annual Meeting, Las Vegas, Nevada.

Hagemann, M.F., and Gill, M., 1996, Impediments to Intrinsic Remediation, Moffett Field Naval Air Station, Conference on Intrinsic Remediation of Chlorinated Hydrocarbons, Salt Lake City.

Hagemann, M.F., Fukunaga, G.L., 1996, The Vulnerability of Groundwater to Anthropogenic Contaminants on the Island of Maui, Hawaii. Hawaii Water Works Association Annual Meeting, Maui, October 1996.

Hagemann, M. F., Fukanaga, G. L., 1996, Ranking Groundwater Vulnerability in Central Oahu, Hawaii. Proceedings, Geographic Information Systems in Environmental Resources Management, Air and Waste Management Association Publication VIP-61.

Hagemann, M.F., 1994. Groundwater Characterization and Cleanup at Closing Military Bases in California. Proceedings, California Groundwater Resources Association Meeting.

Hagemann, M.F. and Sabol, M.A., 1993. Role of the U.S. EPA in the High Plains States Groundwater Recharge Demonstration Program. Proceedings, Sixth Biennial Symposium on the Artificial Recharge of Groundwater.

Hagemann, M.F., 1993. U.S. EPA Policy on the Technical Impracticability of the Cleanup of DNAPL-contaminated Groundwater. California Groundwater Resources Association Meeting.

Hagemann, M.F., 1992. Dense Nonaqueous Phase Liquid Contamination of Groundwater: An Ounce of Prevention... Proceedings, Association of Engineering Geologists Annual Meeting, v. 35.

Other Experience:

Selected as subject matter expert for the California Professional Geologist licensing examination, 2009-2011.

Response to Comment Letter O2 - Mitchell M. Tsai (Western States Regional Council of Carpenters [WSRCC])

Response O1-a

This comment does not raise any substantive issues regarding the adequacy of the Draft EIR. The commenter requests to be included on the noticing list for all future notices referring or related to the Project related to CEQA and the California Planning and Zoning Law. The commenter has been added to the noticing and mailing list.

The City of Ontario intends to fully comply with the requirements of California Public Resources Code (PRC) Section 21000 et seq., 21092.2, and 21167(f), California Planning and Zoning Law (Government Code Sections 65000-65010), and California Government Code Section 65092. That is, the comment requests that the City comply with CEQA when responding to Western States Regional Council of Carpenters' (WSRCC) comments. As requested, the City's responses to WSRCC's comments will be sent to the WSRCC as part of the Final EIR distribution prior to certification of Final EIR. As the comment does not raise any issues with respect to the content and adequacy of the Draft EIR or the Project's environmental effects, no further response is warranted. The comment is included here to provide a complete record of WSRCC's letter. The comment will become part of the administrative record and will be considered by the decision-makers. The comment does not raise any CEQA related issues, and no response is therefore warranted.

Response O2-b

The commenter requests that the City include a mitigation measure to require the Project to be built using local workers (i.e., residing within 10 miles of the Project) in order to reduce vehicle miles traveled (VMT), improve jobs/housing balance and the economic performance of the Project and reduce greenhouse gas (GHG) emissions.

The commenter also requests that the City require the Project to be built with construction workers who have graduated from a specified apprenticeship program in order to produce a positive economic impact of the Project. The Draft EIR is intended to evaluate the environmental impacts of the Project. CEQA does not require an analysis of the Project's economic effects or allow mitigation measures intended to address economic characteristics of the Project. 14. Cal. Code Regs. Sections 15064(e), 15064(f)(6), 15131(a) and 15382. Accordingly, the commenter's request for the City to require construction labor requirements in order to improve economic conditions does not raise any CEQA issues. This comment will be provided to the City's decision-makers for their policy consideration.

Regarding VMT as to construction workers, CEQA provides the lead agency with discretion to choose the most appropriate methodology to evaluate a project's VMT (14. Cal. Code Regs. Sections 15064.3[b][4]). CEQA does not require a separate VMT analysis for construction worker trips or for the construction phase of the Project. The Project's Traffic Analysis (provided as *Appendix I1* of the Draft EIR) was conducted in accordance with San Bernardino County's *Traffic Impact Study Guidelines*. Additionally, the VMT analysis in the Traffic Analysis concluded that the Project would have a less than significant impact related to VMT, as analyzed in *Section 4.15: Transportation and Traffic* of the Draft EIR.

The Project would have a less than significant impact regarding the GHG emissions from construction, as discussed in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, pages 4.8-18 through 4.8-23. As indicated in *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, Table 4.8-2, the combined 30-year amortized construction GHG emissions for Phase I and II would be 145 metric tons of carbon dioxide-equivalents (MTCO₂e; 92 and 53 MTCO₂e, respectively). This would account for approximately 0.4 percent of all GHG emissions related to the Project, including operational emissions, which is approximately 36,129 MTCO₂e (refer to *Section 4.8: Greenhouse Gas Emissions* of the Draft EIR, page 4.8-22).

The commenter included a letter from Soil Water Air Protection Enterprise (SWAPE) dated March 8, 2021, which discusses GHG emissions associated with trip lengths for construction workers traveling to a job site. The SWAPE letter provided calculations for GHG emissions reductions resulting from local hire provisions being applied to the Project's construction. The SWAPE letter concludes that if a local hire provision with a 10-mile radius were implemented, the GHG emissions associated with Project construction would decrease by approximately 17 percent. However, the SWAPE letter, and the calculations provided, utilized data and information related to a different project in a separate jurisdiction, the Village South Specific Plan and City of Claremont, respectively. The SWAPE letter also uses CalEEMod 2016, while the current version available is CalEEMod 2022.1. The SWAPE letter also uses EMFAC2014 data, while EMFAC2021 is the latest. Therefore, the calculations do not pertain to the Project and are not based on the correct modeling. In comparison, the analysis provided in the Draft EIR utilizes the most up to date and most relevant modeling for the Project.

Furthermore, the SWAPE letter states that it ran a model "reducing all worker trip lengths to 10 miles..." (page 4 of the SWAPE Letter). Thus, the SWAPE letter assumes that a local hire program would produce 100 percent local residents as a project's construction workforce, while being located within 10 miles of the project site. In fact, most local hire programs are able to ensure that only a small percentage of construction workers reside locally. For example, the Community Workforce Agreement between the City of Moreno Valley and the Construction Workers Union (CWA) governing public works contracts defines "Local Residents" as residing in the City of Moreno Valley or Riverside County. The CWA only requires that contractors use "best efforts" to hire local residents and sets a goal of 30 percent of the workforce be local residents. Accordingly, the commenter's suggestion that all construction workers live within 10 miles of the Project site is unrealistic.

Using the attainment of the 30 percent goal as an example of an existing local hire program and utilizing the SWAPE letter's assumption that 100 percent local resident workforce would reduce construction-related GHG emissions by 17 percent (and assuming the SWAPE letter's conclusions are transferrable to the Project), implementing a local hire program for the Project would result in a 5.1 percent reduction in construction-related GHG emissions (30 percent of 17 percent). This would represent a reduction of 7.4 MTCO₂e of construction-related GHG emissions or approximately 0.02 percent of the Project's mitigated construction and operational mitigated emissions combined (36,129 MTCO₂e of construction and operational GHG emissions) or approximately 0.020 percent of the Project's unmitigated emissions (37,931 MTCO₂e). This would not constitute a significant reduction in GHG emissions and therefore the implementation of a local-hire provision as a mitigation measure would be ineffective in reducing GHG emissions. The City's "duty to condition project approval on incorporation of feasible mitigation measures only exists when such measures would 'substantially lessen' a significant environmental effect

(Public Resources Code Section 21002; CEQA Guidelines, Section 15021, subd. [a][2]). Thus, the [City] need not, under CEQA, adopt every nickel and dime mitigation scheme brought to its attention or proposed in the project EIR..." (San Franciscans For Reasonable Growth v. City and County of San Francisco [1989] 209 Cal.App.3d 1502.) Furthermore, it is quite possible that the 30 percent goal would not be attained and the reduction in GHG emissions could be substantially less. In addition, the local hire program would require extensive record-keeping and monitoring that would not be justified in light of the insignificant reduction in GHG emissions (i.e., the mitigation would not be roughly proportional to the impact as required by CEQA Guidelines Section 15126.4, subd. [a][4][A]–[B]). Therefore, no revisions to the Draft EIR are required.

Response O2-c

The commenter requests that the City require certain construction protocols to address the possibility of COVID-19 infections among construction worker during the construction process. This comment does not address the adequacy of the environmental analysis and/or document. This comment is noted for the record. In addition, at this time, COVID-19 public health restrictions on workplace activities functions have been repealed and are no longer in effect. If COVID-19 infections were to increase in severity, it is expected that applicable public health authorities would impose new restrictions and protocols for testing, distancing and other measures on construction sites to address these public health concerns. Therefore, no revisions to the Draft EIR are required.

This page intentionally left blank.

Comment Letter O3 - Mitchell M. Tsai (Western States Regional Council of Carpenters [WSRCC])

P: (626) 314-3821 F: (626) 389-5414 E: info@mitchtsailaw.com

139 South Hudson Avenue Suite 200 Pasadena, California 91101

VIA E-MAIL

February 29, 2024

Edmelynne V. Hutter, Senior Planner City of Ontario 303 East B Street Ontario, CA 91764

Em: ehutter@ontarioca.gov

RE: Euclid Mixed Use Specific Plan Project

Dear Edmelynne Hutter:

On behalf of the Western States Regional Council of Carpenters ("Western Carpenters" or "WSRCC"), my Office is submitting these comments regarding the City of Ontario's ("City") Euclid Mixed Use Specific Plan Project (SCH 2023020281) ("Project").

WSRCC would like to express its support for this Project and withdraw their prior February 5, 2024, Comment Letter. After receiving clarification and further information about this Project, WSRCC have reached an agreement with the developers that resolves previous environmental concerns.

Should the City have any questions or concerns, please feel free to contact my Office. Sincerely,

Mitchell M. Tsai

Attorneys for Western States Regional Council of Carpenters

а

This page intentionally left blank.

Response to Comment Letter O3 - Mitchell M. Tsai (Western States Regional Council of Carpenters [WSRCC])

Response O3-a

The commenter is stating their withdrawal of the prior comment letter received February 5, 2024, and expresses their support of the project. No further response is warranted.

This page intentionally left blank.

Section 3.0 Errata to the Draft EIR

3.1 INTRODUCTION TO THE ERRATA

In accordance with the CEQA Guidelines Section 15132 (a), this section of the Final EIR provides changes to the Draft EIR that have been made to clarify, correct, or supplement the information provided in that document. This section contains revisions to the Draft EIR based upon (1) additional or revised information required to prepare a response to a specific comment; (2) applicable updated information that was not available at the time of Draft EIR publication; and/or (3) typographical errors. This section also includes additional mitigation measures to fully respond to commenter concerns as well as provide additional clarification to mitigation requirements included in the Draft EIR.

These changes and additions are due to recognition of inadvertent errors or omissions, and to respond to comments received on the Draft EIR during the public review period. The changes described in this section do not add significant new information to the Draft EIR that would require recirculation of the Draft EIR. More specifically, CEQA requires recirculation of a Draft EIR only when "significant new information" is added to a Draft EIR after public notice of the availability of the Draft EIR has occurred (refer to California Public Resources Code [PRC] Section 21092.1 and CEQA Guidelines Section 15088.5), but before the EIR is certified. Section 15088.5 of the CEQA Guidelines specifically states:

New information added to an EIR is not 'significant' unless the EIR is changed in a way that deprives the public of a meaningful opportunity to comment upon a substantial adverse environmental effect of the project or a feasible way to mitigate or avoid such an effect (including a feasible project alternative) that the project's proponents have declined to implement. 'Significant new information' requiring recirculation includes, for example, a disclosure showing that:

- A new significant environmental impact would result from the project or from a new mitigation measure proposed to be implemented.
- A substantial increase in the severity of an environmental impact would result unless mitigation measures are adopted to reduce the impact to a level of insignificance.
- A feasible project alternative or mitigation measure considerably different from others previously analyzed would clearly lessen the significant environmental impacts of the project, but the project's proponents decline to adopt it.
- The draft EIR was so fundamentally and basically inadequate and conclusory in nature that meaningful public review and comment were precluded.

CEQA Guidelines Section 15088.5 also provides that "[re]circulation is not required where the new information added to the EIR merely clarifies or amplifies or makes insignificant modifications in an adequate EIR... A decision not to recirculate an EIR must be supported by substantial evidence in the administrative record." As demonstrated in this Final EIR, the changes presented in this section do not constitute new significant information warranting recirculation of the Draft EIR as set forth in CEQA Guidelines Section 15088.5. Rather, the Draft EIR is comprehensive and has been prepared in accordance with CEQA.

As explained below, none of the changes adds any new significant information and recirculation is not required.

The responses to comments contain material and revisions that will be added to the text of the Final EIR. City of Ontario staff has reviewed this material and determined that none of this material constitutes the type of significant new information that requires recirculation of the Draft EIR for further public comment under CEQA Guidelines Section 15088.5. None of this new material indicates that the project will result in a significant new environmental impact not previously disclosed or analyzed in the Draft EIR. Additionally, none of this material indicates that there would be a substantial increase in the severity of a previously identified environmental impact that will not be mitigated, or that there would be any of the other circumstances requiring recirculation described in Section 15088.5.

Changes to the Draft EIR are listed by Section, page, paragraph, etc. to best guide the reader to the revision. Changes are identified as follows:

- Deletions are indicated by strikeout text.
- Additions are indicated by <u>underline text.</u>

3.2 CHANGES TO THE DRAFT EIR

The following text has been revised in response to comments received on the Draft EIR.

Section 1.0: Executive Summary

The Draft EIR Executive Summary (Section 1.0) is hereby revised to incorporate the minor revisions to mitigation measures noted below.

Section 4.3 Air Quality

1. Mitigation Measure AQ-6 on page 4.3-30 is revised as follows:

MM AQ-6

<u>In residential uses, tThe</u> installation of wood-burning and natural gas <u>equipmentfireplaces</u> <u>and stoves</u> shall be prohibited. The purpose of this measure is to limit emissions of ROG, CO, particulate matter, and visible emissions from wood-burning and natural gas <u>devices</u> <u>fireplaces</u> and <u>stoves</u> used for primary heat, supplemental heat, or ambiance. This prohibition shall be noted on the deed and/or lease agreements for future <u>residential</u> property owners/tenants to obey.

Section 4.5: Cultural Resources

1. The third paragraph on Page 4.5-20 is revised as follows:

The City Development Code Article 26, Historic Preservation, promotes the public health, safety, and general welfare by:

- Safeguarding the character and history of the City which is reflected in its unique cultural, historical, and architectural heritage, with emphasis on the "Model Colony" as recognized by an Act of Congress and presented at the St. Louis World's Fair in 1904;
- Promoting public knowledge, appreciation, and understanding of the City's past;

- Fostering civic and neighborhood pride in the beauty and accomplishments of the past;
- Promoting the enjoyment and use of Historical Resources appropriate for the education and recreation of the people of the City;
- Enhancing the visual and aesthetic character, diversity, and interest of the City;
- Enhancing property values and stabilizing neighborhoods within the City;
- Recognizing Historical Resources and protecting areas of historical buildings from encroachment of incompatible designs;
- Providing economic benefits to the City and its inhabitants through financial incentives for preservation:
- Protecting and enhancing the City's attraction to tourists and visitors,
- Stimulating business and industry;
- Promoting public awareness of the benefits of preservation; and
- Encouraging public participation in historic preservation, thereby increasing civic pride in the City's heritage.

The Project area would comply with the City's Historic Preservation Ordinance, ensuring all historically-significant findings within the City, including the Project area, would align with the above standards.

The City Development Code Section 4.02.040 through 4.02.065 and, establishes processes and procedures for the historic preservation of the City through discretionary permits and actions, including:

- <u>Procedures by which Local Historic Landmarks and Districts, Historic Resource Tiering, and Architectural Conservation Areas may be designated,</u>
- A process by which a historic resource may rescind or amend its assigned status, including a Local Landmark or Local District Designation, a Tier Designation, an Eligibility Determination, or an Architectural Conservation Area,
- a process to ensure that any alteration to, or demolition of, an eligible or designated historic resource within the City is in keeping with the historic character of the resource,
- <u>a process to ensure that denial of a Certificate of Appropriateness and/or a Demolition Application</u> does not create any undue hardship upon the owner of a Tier I or Tier II historic resource,
- a process to expedite the review process for project areas in which numerous historic resources within a single project area would require the issuance of multiple Certificates of Appropriateness for proposed work to those Historic Resources, and
- a process by which economic incentives may be provided for the preservation of a designated historic landmark or contributing structure within a designated historic district.

The City Development Code Division 7.01, Historic Preservation, specifies significance criteria for the designation of historic resources, procedures for designation, and review procedures to:

- Safeguard the character and history of the City, which is reflected in its unique culturally, historically, and architecturally significant structures and heritage, with emphasis on the "Model Colony," as recognized by an Act of Congress and presented at the St. Louis World's Fair in 1904;
- Encourage and promote the adaptive reuse of the City's historic resources;
- Enhance, perpetuate, and preserve architecturally and historically significant structures and promote revitalization of historic neighborhoods and commercial areas;
- Ensure that the rights of the owners of historic resources are safeguarded;
- Foster civic pride in the beauty and noble accomplishments of the past by promoting private stewardship of historic resources that represent these accomplishments;
- Fulfill the City's responsibilities as a Certified Local Government under Federal preservation laws;
- <u>Promote the identification, documentation, and evaluation of the significance of individual</u> historic resources and districts;
- Implement the historic preservation goals, policies, and programs of the Policy Plan (General Plan) component of The Ontario Plan;
- Promote the City as a destination for tourists and as a desirable location for business;
- Promote public awareness of the value of rehabilitation, restoration, and maintenance of the existing building stock as a means to conserve reusable material and energy resources;
- Recognize the City's historic resources as economic assets and provide economic financial incentives for historic preservation;
- <u>Stabilize and improve property values, and enhance the aesthetic and visual character, place</u> making, diversity, and environmental amenities of the City's historic properties and areas;
- Promote public knowledge, appreciation, and understanding of the City's past, and foster civic and neighborhood pride in the beauty and accomplishments of the past;
- <u>Promote the enjoyment and use of historic resources appropriate for the education and</u> recreation of the people of the City;
- Recognize historic resources and protect areas of historic structures from encroachment of incompatible designs;
- Promote public awareness of the benefits of preservation; and
- Encourage public participation in historic preservation, thereby increasing civic pride in the City's heritage.

2. Mitigation measures listed on page 4.5-29 through 4.5-30 are revised as follows:

Mitigation Measures

MM CUL-1

Prior to issuance of a demolition building permit, every effort shall be made to relocate the Milk Parlor (front portion). If determined by the feasibility study pursuant MM CUL-6 that the historic property is able to be relocated, every effort shall be made to facilitate

the relocation. The buildings shall be offered at no cost for those who can relocate offsite. Advertisements notifying the public of the opportunity to relocate the building shall be placed for a minimum of 30 days: on-site with temporary signage, in at least three local publications (newspapers, magazines, local organization newsletters), and on local bulletin boards.

MM CUL-2

Prior to issuance of a building permit for demolition of historic properties addressed to 13813 Euclid Avenue, 7275 Schaefer Avenue, or 7244 & 7260 Edison Avenue at the same time or separately, a HABS (level 3) documentation, including but not limited to as built drawing, historical narrative, and Historic American Building Survey (HABS) photographs of the <u>subject</u> historic resource <u>pursuant to HABS Level 3 standards</u> shall be submitted to the Planning Department for <u>review</u>, <u>approval</u>, <u>and</u> subsequent release to the Ovitt Family Community Library, Model Colony History Room—prior to issuance of demolition building permit. Digital files and 2 printed copies are required (one archival and one non-archival).

MM CUL-3

A mitigation fee pursuant to Section 7.01.030 of the Ontario Development Code shall be paid to the Planning Department prior to issuance of building permit for demolition of the historic resources located at 13813 Euclid Avenue, 7275 Schaefer Avenue, and 7244 & 7260 Edison Avenue. Mitigation fee is equal to 30% of the price per square foot construction cost as established in the most current International Code Council Building Valuation Data. The fee amount will be provided by the Planning Department at the time of payment. Funds will be deposited into the City's Historic Preservation Trust Fund.

MM CUL-4

Prior to issuance of a building permit for demolition of historic properties addressed to 13813 Euclid Avenue, 7275 Schaefer Avenue, or 7244 & 7260 Edison Avenue, A a determination shall be made by the Planning Department whether items within or on the historic properties resource should be salvaged shall be made by the Planning Department. The applicant shall be responsible for the removal, relocation and donation of such items selected for salvaging. An inventory of salvaged items shall be provided by the applicant to the Planning Department prior to the issuance of building permit.

MM CUL-6

<u>Prior to issuance of a demolition building permit,</u> A <u>a</u> feasibility study of the relocation and adaptive reuse shall be completed by a qualified architect and structural engineer who specializes in historic buildings in consultation with contractors who specialize in moving buildings for the Milk Parlor within the area identified as Phase II. MM CUL-1 shall be implemented if determined relocation is feasible.

MM CUL-7

A comparative study of other dairy areas within California such as the San Joaquin Valley, Arcata Bottoms in Humboldt County, and the Fresno region to further understand the significance of dairy farming at a local, regional, and statewide level shall be submitted to the Planning Department for review and acceptance, prior to issuance of the Certificate of Final Occupancy for the first building constructed within the project area.

MM CUL-8

<u>Produce a A short video documentary (12-15 minute)</u> on the operations of a functioning dairy located within the Ontario Ranch area. The 12-15 minute documentary should focus

<u>focusing</u> on the dairy history, themes, site, building, and stories gathered from new and archived oral interviews, dairy context and recent dairy surveys <u>shall be produced and submitted to the Planning Department for review and acceptance prior to issuance of a Certificate of Final Occupancy for the first building constructed within the project area.</u>

Section 4.8: Greenhouse Gas Emissions

1. The second and third paragraphs on page 4.8-23 are revised as follows:

As shown in Table 4.8-7, Project Buildout would generate approximately 36,129 MTCO2e per year with the implementation of operational air quality MM AQ-2 through MM AQ-6. Since the majority of emissions are from mobile sources and neither the Project Applicant nor the City have regulatory authority to control tailpipe emissions, no feasible mitigation measures exist that would reduce the Project's impacts with respect to mobile operational emissions . While the Project has some control over GHG emissions (refer to MM AQ 2 through MM AQ 6), the majority of emissions are beyond the Project's control.—MM GHG-1 would require that the Project incorporate project design features to achieve a minimum score of 100 points on the Screening Tables. As stated in the Community CAP, projects that achieve a minimum score of 100 points are considered less than significant. At the time of this analysis, the Project is in the design phase, where project design features needed to achieve consistency with the Screening Tables are being considered and implemented. A preliminary set of the screening tables has been completed to show that the Project can feasibly achieve 100 points (refer to Appendix B). The applicant must complete and submit a final set of screening tables showing the achievement of the required 100 points prior to issuance of the building permit, as required by MM GHG-1. Therefore, even with the implementation of MM AQ-2 through MM AQ-6 and MM GHG-1, this Project impact is less than significant.

The Project would be pursuant to TOP 2050 and would represent a consistent and logical continuation of the existing and planned pattern of development in Ontario, specifically the Ontario Ranch area. The City has long anticipated that this area would transition from dairy/agricultural to urban uses, and the Project Specific Plan is implementing TOP 2050. Pursuant to TOP 2050, implementation of the Project Specific Plan would represent a consistent and logical continuation of the existing and planned pattern of development in Ontario, specifically the Ontario Ranch area. Therefore, the Project impact is considered less than significant. Therefore, although Project emissions are conservatively considered to be significant and unavoidable, emissions have been included in the emissions forecasts for TOP 2050.

2. The Impact 4.8-2 level of significance on page 4.8-24 is revised as follows:

Impact 4.8-2: Would the Project conflict with an applicable plan, policy, or regulation of an agency adopted for the purpose of reducing GHG emissions?

Level of Significance: Significant and Unavoidable Impact Less than Significant with Mitigation Incorporated

3. The first paragraph on page 4.8-28 is revised as follows:

The CAP establishes a city points system that assigns values for each GHG emissions mitigation design element or operational program feature incorporated into a given development project. The CAP

Screening Tables point values correspond to the minimum GHG emissions reduction expected from each feature. Projects with features that yield at least 100 Screening Table points are considered consistent with the reduction quantities anticipated in the City's CAP. Such projects would be determined to have a less than significant individual and cumulative GHG emissions impact. Table 4.8-9: GHG Reduction Measures Screening Table for Industrial Development identifies potential design features listed in the screening tables and their associated scores. The Project Applicant may work with the City to determine point values for additional design features with the goal of achieving a minimum of 100 points. Since the Project contains both residential and industrial/commercial developments, both the residential and industrial/commercial screening tables must be filled out. A proportion of the points identical to the proportion of the multiple uses would be used to determine the total number of points for the development. For the Project, approximately 90 percent of the total area is industrial/commercial and approximately 10 percent is residential. Therefore, a 0.9 multiplier would be used for the industrial/commercial screening table points and a 0.1 multiplier would be used for the residential screening table. Table 4.8-9 shows that the proposed Project has the potential to achieve 100 points on the CAP's screening tables through the implementation of high-scoring design features. Note that Table 4.8-9 lists all of the design options provided on the screening tables and is not meant to indicate that the proposed Project would implement these features. A preliminary set of the screening tables has been completed to show that the Project can feasibly achieve 100 points (refer to Appendix B).

4. Table 4.8-9: GHG Reduction Measures Screening Table for Ontario Development on pages 4.8-28 through 4.8-33 is revised as follows:

Table 4.8-9: GHG Reduction Measures Screening Table for Ontario Development

Feature	Description	Assigned Point Value
Multi-Family Residentia	al	
Reduction Measure 1: B	uilding Electrification	
Insulation	2008 Baseline (walls: R-13; roof/attic: R-30)	0
	Modestly Enhanced Insulation (walls: R-13; roof/attic: R-38)	15
	Enhanced Insulation (rigid wall insulation: R-13; roof/attic: R-38)	18
	Greatly Enhanced Insulation (spray foam wall insulated walls R-15 or higher) roof/attic R-38 or higher)	20
Windows	2008 Baseline Windows (0.57 U-factor, 0.4 solar heat gain coefficient (SHGC)	0
	Modestly Enhanced Window Insulation {0.4 U Factor, 0.32 SHGC}	7
	Enhanced Window Insulation {0.32 U-Factor, 0.25 SHGC}	8
	Greatly Enhanced Window Insulation {0.28 or less U-Factor, 0.22 or less SHGC}	12
Cool Roof	Modest Cool Roof (CRRC Rated 0.15 aged solar reflectance, 0.75 thermal emittance)	12
	Enhanced Cool Roof (CRRC Rated 0.2 aged solar reflectance, 0.75 thermal	14

Feature	Description	Assigned Point Value
	emittance)	
	Greatly Enhanced Cool Roof (CRRC Rated 0.35 aged solar reflectance, 0.75 thermal emittance)	16
Air Infiltration	Air barrier applied to exterior walls, calking, and visual inspection such as the HERS Verified Quality Insulation Installation (Q11 or equivalent)	12
	Blower Door HERS Verified Envelope Leakage or equivalent	10
Thermal Storage of Building	Modest Thermal Mass (10% of floor or 10% of walls: 12" or more thick exposed concrete or masonry. No permanently installed floor covering such as carpet, linoleum, wood or other insulating materials)	4
	Enhanced Thermal Mass (20% of floor or 20% of walls: 12" or more thick exposed concrete or masonry. No permanently installed floor covering such as carpet, linoleum, wood or other insulating materials)	6
	Enhanced Thermal Mass (80% of floor or 80% of walls: 12" or more thick exposed concrete or masonry. No permanently installed floor covering such as carpet, linoleum, wood or other insulating materials)	2 4
Replacement of gas	Electric space heater	<u>6</u>
appliance with	Electric water heater	<u>8</u>
<u>efficient</u> <u>electric</u> <u>appliance</u> (select all	<u>Electric stove</u>	<u>5</u>
that apply)	Electric dryer	<u>1</u>
Additional electric	Electric pool heater (if applicable)	<u>1</u>
appliance measures, if applicable (select all	Electric spa heater (if applicable)	<u>1</u>
that apply)	Project site does not have any natural gas infrastructure	<u>10</u>
Reduction Measure 2: G	reen Roofs	
Installation of a roof with a planted layer of vegetation over a waterproof surface for multi-family residential buildings	Medium Green Roof – Total vegetated area makes up 25% or more of combined multi-family residential unit area (in square feet)	<u>3</u>
Reduction Measure 3: U	rban Cooling	
	1 tree per each required on-site vehicle parking space.	<u>6</u>
On-site tree planting (select one option)	2 trees per each required on-site vehicle parking space.	<u>12</u>
	3 trees per each required on-site vehicle parking space.	<u>18</u>
Reduction Measure 4: Transit Oriented Communities (TOCs)		
New development is located in a transitoriented community (TOC)	Development site is located within ½ mile radius of one or more of the following: a Bus Rapid Transit (BRT) stop, bus transit center, light rail station, the intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during the morning and afternoon peak commute periods, and/or High-Quality Transit Corridor defined as a	<u>10</u>

Feature	Description	Assigned Point Value
	corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.	
Reduction Measure 5: In	ocrease Transit Ridership	
Provision of free transit passes for on- site residents or tenants for a period of 5 years after completion of construction (select one option)	One 50% discounted annual transit pass for every two parking spaces, or one per residential unit, whichever is greater.	<u>2</u>
	One 100% discounted (free) annual transit pass for every two parking spaces or one per residential unit, whichever is greater.	<u>6</u>
	One 100% discounted (free) annual transit pass per parking space or one per residential bedroom, whichever is greater.	<u>12</u>
Reduction Measure 6: V	ehicle Electrification	
Installation of EV	Installation of Level 2 EV or higher charging stations at a rate of 5-10% of required vehicle parking spaces.	<u>10</u>
charging stations for resident vehicle parking spaces (select	Installation of Level 2 EV or higher charging stations at a rate of 11-29% of required vehicle parking spaces.	<u>20</u>
one option)	Installation of Level 2 EV or higher charging stations at a rate of 30% or more of required vehicle parking spaces.	<u>30</u>
Reduction Measure 7: A	ctive Transportation	
Installation or	Bicycle parking facilities with 1:1 ratio of bicycle parking to guest vehicle parking space.	<u>3</u>
improvement of bicycle facilities (select all that apply)	Construct or improve a single bicycle lane facility (only Class I, II, or IV) that 1) connects to a larger existing bikeway network or 2) closes an existing bikeway network gap that is at least 0.5 miles long.	<u>6</u>
Installation or improvement of pedestrian facilities (select one option)	Two or three pedestrian infrastructure improvements to street design on private streets, including, but not limited to curb extensions, raised crosswalks, speed humps/bumps, street tree plantings in parkways or street medians, and elevated pavement markings.	<u>3</u>
	Four or more pedestrian infrastructure improvements to street design, including, but not limited to cub extensions, raised crosswalks, speed humps/bumps, street tree plantings in parkways or street medians, and elevated pavement markings.	<u>6</u>
Reduction Measure 8: Po	arking Policy	
Require that some or all of resident vehicle parking spaces be purchased at an additional cost. This does not include guest vehicle parking spaces (select one option)	Unbundle, or separate, half (50%) of parking costs of a residential project from property costs, requiring those who wish to purchase an additional parking space to do so at an additional cost.	<u>1</u>
	Unbundle, or separate, 100% of residential project's parking costs from property costs, requiring those who wish to purchase parking spaces to do so at an additional cost.	<u>2</u>

Feature	Description	Assigned Point Value
Reduction Measure 9: El	lectric construction equipment	
Use zero emission or electric construction equipment (select one option)	One-third (33%) of construction equipment used for construction (during building phase, not including grading phase), measured by number of hours in operation, is zero emission equipment.	<u>4</u>
	Half (50%) of construction equipment used for construction (during the building phase, not including the grading phase), measured by the number of hours of operation, is zero emission equipment.	<u>8</u>
	Two-thirds (66%) or more of construction equipment used for construction (during the building phase, not including the grading phase), measured by number of hours of operation, is zero emission equipment.	<u>12</u>
Reduction Measure 10:	Waste diversion	
Design and plan multi- family housing developments to include on-site areas for municipal compost/green waste and recycling bins/containers	Site design allocates sufficient space for storage and collection of green waste, organic waste, and recyclables.	<u>33</u>
Reduction Measure 11:	Water conservation	
Implement indoor	Implement water efficient showerheads and faucets.	<u>1</u>
water efficiency measures (select all that apply)	Install on-demand water circulators on all showers/baths.	<u>2</u>
Incorporate outdoor water efficiency measures	Design and plan outdoor landscapes planted with drought-tolerant, low maintenance plants with a 1) drip irrigation system or 2) sprinkler irrigation system with a water-based irrigation controller.	4
<u>Additional Recommende</u>	ed Measures	
AR-1: Meet CalGreen	CalGreen Tier 1 compliance.	<u>5</u>
voluntary tiers (select one option)	CalGreen Tier 2 compliance.	<u>10</u>
AR-2: Generate	Solar PV that generates 30%-49% of residential energy needs on multifamily residential buildings that are 4 stories in height or taller.	<u>5</u>
energy from on-site solar PV (4 stories and higher buildings only, select one option)	Solar PV that generates 50% - 79% of residential energy needs on multi- family residential buildings that are 4 stories in height or taller.	<u>10</u>
	Solar PV that generates 80% or more of residential energy needs on multifamily residential buildings that are 4 stories in height or taller.	<u>15</u>
AR-3: Energy Storage	If the building is 3 stories in height or less, install battery energy storage systems that meet the same performance standards as energy storage system that would be required by the building code in an comparable building 4 stories in height or taller.	<u>5</u>
AR-4: Recycled Water	Use recycled water for at least 80% of outdoor water needs.	<u>4</u>

Feature	Description	Assigned Point Value
AR-5: Reflective Paving	Use high-reflectivity pavement for all hardscaped areas, including parking areas, walking paths, and patios.	4
AR-6: Building Orientation	Orient the building along a north-south alignment.	<u>3</u>
AR-7: Building Shading	Shade at least 90% of south-facing glazing by vegetation or overhangs at noon on June 21.	<u>2</u>
AR-8: Building Daylight	Provide daylighting in all rooms.	<u>1</u>
	Total Multi-Family Residential Points Possible	<u>218</u>
Indoor Space Efficiencie	es	
	Minimum Duct Insulation (R-4.2 required)	0
Heating/Cooling Distribution System	Modest Duct insulation (R-6)	8
Distribution system	Enhanced Duct Insulation (R-8)	10
	2008 Minimum HVAC Efficiency (SEER 13/60% AFUE or 7.7 HSPF)	0
Space Heating/	Improved Efficiency HVAC (SEER 14/65% AFUE or 8 HSPF)	7
Cooling Equipment	High Efficiency HVAC (SEER 15/72% AFUE or 8.5 HSPF)	8
	Very High Efficiency HVAC (SEER 16/80% AFUE or 9 HSPF)	12
	2008 Minimum Efficiency (0.57 Energy Factor)	0
	Improved Efficiency Water Heater (0.675 Energy Factor)	14
	High Efficiency Water Heater (0.72 Energy Factor)	16
Water Heaters	Very High Efficiency Water Heater (0.92 Energy factor)	19
	Solar Pre-heat System (0.2 Net Solar Fraction)	4
	Enhanced Solar Pre-heat System (0.35 Net Solar Fraction)	8
Daylighting	All peripheral rooms within the living space have at least one window (required)	1
	All rooms within the living space have daylight (through use of windows, solar tubes, skylights, etc.)	5
	All rooms daylighted	7
	2008 Minimum (required)	0
Artificial Lighting	Efficient lights (25% of In-unit fixtures considered high efficacy. High efficacy is defined as 40 lumens/watt for 15 watt or less fixtures: SO lumens/watt for15 to 40 watt fixtures, 60 lumens/watt for fixtures >40watt)	9
	High Efficiency lights (50% of in-unit fixtures are high efficacy)	12
	Very High Efficiency Lights (100% of in-unit fixtures are high efficacy)	14
Appliances	Energy Star Commercial Refrigerator (new)	4

Feature	Description	Assigned Point Value
	Energy Star Commercial Dish Washer (new)	4
	Energy Star Commercial Cloths Washing	4
Building Placement	North/South alignment of building or other building placement such that the orientation of the buildings optimizes natural heating, cooling, and lighting.	5
Energy Star Homes	EPA Energy Star for Homes (version 3 or above)	25
Irrigation and Landscap	ing	
	Eliminate conventional turf from landscaping	0
Water Efficient	Only moderate water using	3
Landscaping	Only low water using plants	4
	Only California Native landscape that requires no, or only supplemental, irrigation	8
Water Efficient	Low precipitation spray heads <. 75"/hour, or drip irrigation	1
Water Efficient Irrigation Systems	Weather based Irrigation control systems combined with drip irrigation (demonstrate 20% reduced water use)	5
Recycled Water	Recycled connections (purple pipe) to irrigation system on-site	5
Potable Water		
Showers	Water Efficient Showerheads (2.0 gpm)	3
Toilets	Water Efficient Toilets (1.5 gpm)	3
Faucets	Water Efficient faucets (1.28 gpm)	3
Commercial Dishwashers	Water Efficient Dishwasher (6 gallons per cycle or less)	1
Commercial Laundry Washers	Water Efficient Washing Machine (Water factor < 5.5)	1
Bicycle Master Plan		,
Bicycle	Provide bicycle path linkages between residential and other land uses.	2
Infrastructure	Provide bicycle path linkages between residential and transit.	5
Industrial		
	2008 Baseline (walls: R-13; roof/attic: R-30)	0
	Modestly Enhanced Insulation (walls: R-13; roof/attic: R-38)	15
Insulation	Enhanced Insulation (rigid wall insulation: R-13; roof/attic: R-38)	18
	Greatly Enhanced Insulation (spray foam wall insulated walls R-15 or higher) roof/attic R-38 or higher)	20
Windows	2008 Baseline Windows (0.57 U-factor, 0.4 solar heat gain coefficient (SHGC)	θ
	Modestly Enhanced Window Insulation (0.4 U-Factor, 0.32 SHGC)	7

Feature	Description	Assigned Point Value
	Enhanced Window Insulation (0.32 U-Factor, 0.25 SHGC)	8
	Greatly Enhanced Window Insulation {0.28 or less U-Factor, 0.22 or less SHGC}	12
Cool Roof	Modest Cool Roof (CRRC Rated 0.15 aged solar reflectance, 0.75 thermal emittance)	12
	Enhanced Cool Roof (CRRC Rated 0.2 aged solar reflectance, 0.75 thermal emittance)	14
	Greatly Enhanced Cool Roof (CRRC Rated 0.35 aged solar reflectance, 0.75 thermal emittance)	16
Air Infiltration	Air barrier applied to exterior walls, calking, and visual inspection such as the HERS Verified Quality Insulation Installation (Q11 or equivalent)	12
	Blower Door HERS Verified Envelope Leakage or equivalent	10
Thermal Storage of Building	Modest Thermal Mass (10% of floor or 10% of walls: 12" or more thick exposed concrete or masonry. No permanently installed floor covering such as carpet, linoleum, wood or other insulating materials)	4
	Enhanced Thermal Mass (20% of floor or 20% of walls: 12" or more thick exposed concrete or masonry. No permanently installed floor covering such as carpet, linoleum, wood or other insulating materials)	6
	Enhanced Thermal Mass (80% of floor or 80% of walls: 12" or more thick exposed concrete or masonry. No permanently installed floor covering such as carpet, linoleum, wood or other insulating materials)	2 4
Indoor Space Efficiencie	es	
	Minimum Duct Insulation (R-4.2 required)	0
Heating/Cooling Distribution System	Modest Duct insulation (R-6)	8
	Enhanced Duct Insulation (R-8)	10
	2008 Minimum HVAC Efficiency (SEER 13/60% AFUE or 7.7 HSPF)	0
Space Heating/	Improved Efficiency HVAC (SEER 14/65% AFUE or 8 HSPF)	7
Cooling Equipment	High Efficiency HVAC (SEER 15/72% AFUE or 8.5 HSPF)	8
	Very High Efficiency HVAC (SEER 16/80% AFUE or 9 HSPF)	12
	2008 Minimum Efficiency (0.57 Energy Factor)	0
	Improved Efficiency Water Heater (0.675 Energy Factor)	1 4
	High Efficiency Water Heater (0.72 Energy Factor)	16
Water Heaters	Very High Efficiency Water Heater (0.92 Energy factor)	19
	Solar Pre-heat System (0.2 Net Solar Fraction)	4
	Enhanced Solar Pre-heat System (0.35 Net Solar Fraction)	8
Daylighting	All peripheral rooms within the living space have at least one window (required)	1

Feature	Description	Assigned Point Value		
	All rooms within the living space have daylight (through use of windows, solar tubes, skylights, etc.)	5		
	All rooms daylighted	7		
Artificial Lighting	2008 Minimum (required)	0		
	Efficient lights (25% of In-unit fixtures considered high efficacy. High efficacy is defined as 40 lumens/watt for 15 watt or less fixtures: SO lumens/watt for15 to 40-watt fixtures, 60 lumens/watt for fixtures >40watt)	9		
	High Efficiency lights (50% of in-unit fixtures are high efficacy)	12		
	Very High Efficiency Lights (100% of in-unit fixtures are high efficacy)	1 4		
	Energy Star Commercial Refrigerator (new)	4		
Appliances	Energy Star Commercial Dish Washer (new)	4		
	Energy Star Commercial Cloths Washing	4		
Irrigation and Landscap	ing	1		
	Eliminate conventional turf from landscaping	0		
	Only moderate water using	3		
Water Efficient Landscaping	Only low water using plants	4		
	Only California Native landscape that requires no, or only supplemental, irrigation	8		
Matar Efficient	Low precipitation spray heads <. 75"/hour, or drip irrigation	1		
Water Efficient Irrigation Systems	Weather based Irrigation control systems combined with drip irrigation (demonstrate 20% reduced water use)	5		
Recycled Water	Recycled connections (purple pipe) to irrigation system on-site	5		
Potable Water				
Showers	Water Efficient Showerheads (2.0 gpm)	3		
Toilets	Water Efficient Toilets (1.5 gpm)	3		
Faucets	Water Efficient faucets (1.28 gpm)	3		
Commercial Dishwashers	Water Efficient Dishwasher (6 gallons per cycle or less)	1		
Commercial Laundry Washers	Water Efficient Washing Machine (Water factor < 5.5)	1		
Warehouse/ Non-Residential Development				
Reduction Measure 1: B	uilding Electrification			
Replacement of gas	Electric space heater	<u>5</u>		
appliance with electric appliance	Electric water heater	<u>8</u>		
	Electric stove (if applicable)	<u>2</u>		

Feature	Description	Assigned Point Value	
(select all that apply)			
Lack of natural gas infrastructure	Project site does not have any natural gas infrastructure	<u>8</u>	
Reduction Measure 2: Solar Energy Systems for New Warehouse Development only (solar energy system requ for warehouse development)			
Installation of rooftop solar energy	Installation of rooftop solar energy system which generates enough electricity to meet 45% of annual warehouse electricity demand.	<u>22</u>	
systems at new warehouse/logistics	Installation of rooftop solar energy system which generates enough electricity to meet 90% of annual warehouse electricity demand.	<u>44</u>	
facilities. (select one option)	Installation of rooftop solar energy system which generates enough electricity to meet 100% of annual warehouse electricity demand.	<u>48</u>	
Installation of	Solar battery storage installation with a capacity of 200-599 kW (DC).	<u>3</u>	
battery storage at new warehouse/	Solar battery storage installation with a capacity of 600-799 kW (DC).	<u>6</u>	
logistics facilities (select one option)	Solar battery storage installation with a capacity of 800-1200 kW (DC).	<u>11</u>	
Reduction Measure 3: G	reen Roofs		
Installation of a roof with a planted layer	Medium Green Roof – Total vegetated area makes up 50% of combined non-residential floor area (in square feet).	<u>1</u>	
of vegetation over a waterproof surface for non-residential buildings (select one option)	Large Green Roof – Total vegetated area makes up 100% or more of combined non-residential floor area (in square feet).	<u>2</u>	
Reduction Measure 4: U	<u>rban Cooling</u>		
	1 tree per each required on-site employee/visitor vehicle parking space.	<u>4</u>	
On-site tree planting (select one option)	2 trees per each required on-site employee/visitor vehicle parking space.	<u>8</u>	
(Select Offe Option)	3 trees per each required on-site employee/visitor vehicle parking space.	<u>15</u>	
Reduction Measure 5: T	ransit Oriented Communities (TOCs)		
New development is located in a transit-oriented community (TOC)	The development site is located within ½ mile radius of one or more of the following: a Bus Rapid Transit (BRT) stop, bus transit center, light rail station, the intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during the morning and afternoon peak commute periods, and/or High-Quality Transit Corridor defined as a corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.	7	
Reduction Measure 6: Increase Transit Ridership			
Provision of free transit passes in a quantity equivalent	One free annual transit pass for every employee.	<u>6</u>	

Feature	Description	Assigned Point Value
to the expected number of employees at the non-residential building. Transit passes shall be provided for a period of 5 years after completion of construction. Reduction Measure 7: V	oh ialo Electrification	
<u>Neduction Wedsure 7. V</u>	Installation of Level 2 or higher EV charging stations at a rate of 5-9% of	
	planned truck parking spaces.	<u>2</u>
Installation of EV	Installation of Level 2 or higher EV charging stations at a rate of 10-19% of planned truck parking spaces.	<u>4</u>
charging stations for truck parking spaces	Installation of Level 2 or higher EV charging stations at a rate of 20-29% of planned truck parking spaces.	<u>6</u>
(select one option)	Installation of Level 2 or higher EV charging stations at a rate of 30-49% of planned truck parking spaces.	<u>10</u>
	Installation of Level 2 or higher EV charging stations at a rate of 50% or more of planned truck parking spaces.	<u>15</u>
Reduction Measure 8: A	ctive Transportation	
Installation or	Bicycle parking facilities with 1:20 ratio of bicycle parking to employee vehicle parking space.	<u>2</u>
improvement of bicycle facilities (select all that apply)	Construct or improve a single bicycle lane facility (only Class I, II, or IV) that 1) connects to a larger existing bikeway network or 2) closes an existing bikeway network gap that is at least 0.5 miles long.	<u>3</u>
Installation or improvement of pedestrian facilities (select one option)	Two or three pedestrian infrastructure improvements to street design on private streets, including, but not limited to curb extensions, raised crosswalks, speed humps/bumps, street tree plantings in parkways or street medians, and elevated pavement markings.	<u>2</u>
	Four or more pedestrian infrastructure improvements to street design on private streets, including, but not limited to private property curb extensions, raised crosswalks, speed humps/bumps, elevated pavement markings, and public property street tree plantings in parkways or street medians.	4
Reduction Measure 9: P	arking Policy	
Require that employee vehicle parking spaces be purchased at an additional cost. This	Unbundle, or separate, 100% of non-residential project's parking costs from property costs, requiring those who wish to purchase parking spaces to do so at an additional cost.	<u>1</u>

Feature	Description	Assigned Point Value			
does not include client/visitor vehicle parking spaces.					
Reduction Measure 10:	Reduction Measure 10: Electric construction equipment				
Use electric construction equipment for a portion of the construction project (select one option)	One-third (33%) of construction equipment used for construction (during building phase, not including grading phase), measured by number of hours of operation, is zero emission equipment.	<u>3</u>			
	Half (50%) of construction equipment used for construction (during the building phase, not including the grading phase), measured by the number of hours of operation, is zero emission equipment.	<u>5</u>			
	Two-thirds (66%) or more of construction equipment used for construction (during the building phase, not including the grading phase), measured by number of hours of operation, is zero emission equipment.	<u>8</u>			
Reduction Measure 11:	Waste diversion				
Site design for non- residential warehouse development includes site(s) for green waste/ organics and recycling collection bins	Site design allocates sufficient space for storage and collection of green waste, organic waste, and recyclables.	<u>20</u>			
Reduction Measure 12:	Water Conservation				
Implement indoor	Install water-efficient faucets and showerheads.	<u>1</u>			
water efficiency measures (select all that apply)	Install on-demand water circulators on commercial sinks or dishwashing equipment.	<u>2</u>			
Incorporate outdoor water efficiency measures	Design and plan outdoor landscapes planted with drought-tolerant, low maintenance plants with a 1) drip irrigation system or 2) sprinkler irrigation system with a weather-based irrigation controller.	<u>4</u>			
Additional Recommend	<u>ed Measures</u>	T			
AR-1: Charging stations for large trucks (select one option)	Installation of conduit for charging stations for zero emission trucks larger than two-axles (class 8 and 9, and semi-trucks) so that facilities are prepared for the transition to electric trucks.	<u>4</u>			
	Installation of 1-4 charging stations for zero emission trucks larger than two-axles (class 8 and 9, and semi-trucks)	<u>8</u>			
	Installation of 5-9 charging stations for zero emission trucks larger than two-axles (class 8 and 9, and semi trucks)	<u>12</u>			
	Installation of 10 or more charging stations for zero emission trucks larger than two-acles (class 8 and 9, and semi-trucks)	<u>24</u>			

Feature	Description	Assigned Point Value
AR-2: Meet CalGreen voluntary tiers (select one option)	<u>CalGreen Tier 1 compliance</u>	<u>5</u>
	<u>CalGreen Tier 2 compliance</u>	<u>20</u>
AR-3: Installation of EV charging stations for employee vehicle parking spaces (select one option)	Installation of Level 2 or higher EV charging stations at a rate of 5-9% of planned employee vehicle parking spaces.	4
	Installation of Level 2 or higher EV charging stations at a rate of 10-19% of planned employee vehicle parking spaces with Level 2 EV charging stations.	<u>6</u>
	Installation of Level 2 or higher EV charging stations at a rate of 20% or more of planned employee vehicle parking spaces Level 2 EV charging stations.	<u>12</u>
AR-4: Recycled Water	Use recycled water for at least 80% of outdoor water needs.	2
AR-5: Reflective Paving	Use high-reflectivity pavement for all hardscaped areas, including parking areas, walking paths, and patios.	4
AR-6: Zero Emission Cargo Equipment	Use of zero emission cargo handling equipment for a minimum of 50% of all operations.	4
AR-7: Alternative Fueling	Installation of alternative fuel facilities, such as CNG, biofuels, or hydrogen fueling stations.	<u>10</u>
	<u>Total Warehouse Points Possible</u>	<u>238</u>

Source: <u>City of Ontario, 2023. Ontario Community Climate Action Plan Greenhouse Gas Emissions Screening Tables.</u> <u>City of Ontario 2018.</u> <u>Greenhouse Gas Reduction Measures Screening Threshold Table Directions. https://www.ontarioca.gov/sites/default/files/Ontario-Files/Planning/Applications/Greenhouse%20Gas%20-%20Threshold%20%26%20Screening%20Tables.pdf. (accessed April 2023).</u>

Section 4.16: Tribal Cultural Resources

1. The fourth paragraph on page 4.16-10 is revised as follows:

As stated above, no TCRs were identified within the Project area. However, impacts to cultural resources, including TRCs, are considered potentially significant and mitigation measures are required to ensure the proper treatment of undiscovered cultural resources that may be encountered during grading. As discussed in *Section 4.5: Cultural Resources*, the application of mitigation measures <u>MM CUL-6</u> <u>MM CUL-9</u> and <u>MM CUL-10</u> below requiring Cultural Awareness training for all construction and field personnel and ensure the proper treatment of undiscovered resources that may be encountered during grading would reduce the impacts to less than significant levels.

2. The fifth paragraph on page 4.16-10 is revised as follows:

Refer to Section 4.5: Cultural Resources for MM CUL-6 MM CUL-9 and MM CUL-7 MM CUL-10.

Section 6.0: Alternatives

1. The third paragraph on page 6-6 is revised as follows:

Under the No Project/No Build Alternative, no new development would occur, and no construction, demolition, or operational activities would generate GHG emissions. Under the No Project/No Build Alternative the existing, minimal emissions would continue. These emissions would be incorporated and accounted for in the City's long-range planning efforts and would therefore act as a baseline for the City's air quality goals. Furthermore, this alternative would not increase GHG emissions by 24,271 MTCO2e per year, unlike the proposed Project—and would avoid the proposed Project's significant and unavoidable impacts. Therefore, impacts under the No Project/No Build Alternative would be reduced compared to the Project.

2. The sixth paragraph on page 6-11 is revised as follows:

The No Project/Existing General Plan Alternative would have the same overall impact area as the proposed Project. This alternative would result in up to 466 dwelling units, 1,517 residents, and 1,655 employees. The No Project/Existing General Plan Alternative would result in similar impacts to the proposed Project. Therefore, construction and operation related greenhouse gas emissions would be similar—and—would remain significant and unavoidable. All future development areas would be consistent with TOP 2050 under this alternative and be zoned for urban uses rather than agricultural uses. Therefore, impacts under this alternative would be the same compared to the proposed Project.

3. The first paragraph on page 6-17 is revised as follows:

The Reduced-Intensity Alternative would develop the Project site for the same type of mixed-use and business park uses, but with less intensity than the proposed Project. Therefore, a reduced volume of construction activities and associated GHG emissions would occur. In addition, the reduced square footage would result in less stationary source emissions from equipment on-site, and less traffic related GHG emissions than the proposed Project. The proposed Project would result in the generation of approximately 24,271 MTCO2e per year, which would be reduced by approximately 25 percent to 18,204 MTCO2e per year under the Reduced-Intensity Alternative. This alternative would result in a similar impact to the Project, and mitigation measures would be incorporated to reduce emissions to less than significant levels. This alternative would still result in significant and unavoidable GHG impacts, since it would exceed the threshold of 3,000 MTCO2e per year, and mitigation measures would not reduce emissions to less than significant levels. Therefore, the alternative would have a significant and unavoidable impact on GHG emissions, but would be reduced compared to the proposed Project.

4. The second paragraph on page 6-22 is revised as follows:

The Reduced-Intensity Alternative has been identified as the environmentally-superior alternative because it would result in reduced impacts related to noise, population and housing, public services, transportation and traffic, and utilities and service systems and similar impacts related to agriculture and forestry resources, air quality, biological resources, cultural resources, energy, geology and soils, GHG emissions, hazards and hazardous materials, hydrology and water quality, land use and planning, and tribal cultural resources. However, the Reduced-Intensity Alternative would still result in significant and

unavoidable impacts related to agricultural and forestry resources, air quality, cultural resources, GHG emissions, and transportation and traffic. Impacts related to aesthetics, biological resources, geology and soils, <u>GHG emissions</u>, hazardous and hazardous materials, hydrology and water quality, and tribal cultural resources would be similar to the proposed Project.

Section 4.0 Final EIR Appendices

4.1 DEIR DISTRIBUTION PACKAGE

The following items are provided in the Affidavit of Distribution for the Draft EIR.

- Affidavit of Distribution
- Proof of Publication, The Press Enterprise
- NOA San Bernardino County Clerk Filing Copy

This page intentionally left blank.

Inland Valley Daily Bulletin - SB 3200 Guasti Rd. Suite 100 Ontario, California 91761 (909) 987-6397

0011638878

City of Ontario - Planning Dept. 303 East B Street Ontario, California 91764

PROOF OF PUBLICATION (2015.5 C.C.P.)

STATE OF CALIFORNIA **County of San Bernardino**

I am a citizen of the United States and a resident of the County aforesaid; I am over the age of eighteen years, and not party to or interested in the above-entitled matter. I am the principal clerk of the printer of Inland Valley Daily Bulletin - SB, a newspaper of general circulation, printed and published in the City of Ontario*, County of San Bernardino, and which newspaper has been adjudged a newspaper of general circulation by the Superior Court of County of San Bernardino, State of California, under the date of June 15, 1945, Decree No. Pomo C-606. The notice, of which the annexed is a printed copy (set in type not smaller than nonpareil), has been published in each regular and entire issue of said newspaper and not in any supplement thereof on the following dates, to wit:

12/22/2023

I certify (or declare) under the penalty of perjury that the foregoing is true and correct.

Dated at Ontario, California

On this 22nd day of December, 2023.

(40 meida

*Inland Valley Daily Bulletin - SB circulation includes the following cities:

[UNKNOWN LIST]

Notice of Availability and Public Hearing Notice <u>Euclid Mixed Use Specific Plan</u>

Environmental Impact Report

The CITY OF ONTARIO (City), as the Lead Agency, has prepared a Draft Environmental Impact Report (EIR) pursuant to the California Public Resources Code and the California Environmental Quality Act (CEQA) to evaluate the environmental effects associated with the Euclid Mixed Use Specific Plan Project (Project). This Notice of Availability (NOA) has been issued to notify interested parties that the Draft EIR is publicly available for a 45-day review and comment period. The City is requesting comments on the Draft EIR from responsible and trustee agencies, interested public agencies, organizations, and the general public (pursuant to CEQA Guidelines Section 15087). The Draft EIR assesses the potential environmental impacts resulting from the Project.

The Project site is located on 18 parcels totaling 84.1 acres in the southwestern portion of the City, in San Bernardino County. The proposed Project site is bounded by Schaefer Avenue on the north, Sultana Avenue on the east, Edison Avenue on the south, and Euclid Avenue on the west. The Project development would include up to 290,110 square feet of commercial retail/office uses, up to 466 residential units, and 1,386,777 square feet of business park uses, and associated on-site and off-site infrastructure improvements.

Project entitlements and approvals required for the Project include:

Certification of the Euclid Mixed Use Specific Plan Final EIR (SCH# 2023020281) Adoption of the Mitigation Monitoring and Reporting Program Adoption of the Euclid Mixed Use Specific Plan (PSP22-001)

An electronic PDF of the Draft EIR is available for download on the City's website at https://www.ontarloca.gov/Planning/Reports/Environmentalimpact and are available on the State Clearinghouse CEQAnet Web Portal (https://ceqanet.opr.ca.gov/ . In addition, hard copies will be available at the following locations:

City of Ontario Planning Department, 303 East "B" Street, Ontario, California 91764 Ovitt Family Community Library, 215 East "C" Street, Ontario, California 91764 City of Ontario, City Clerk, 303 East "B" Street, Ontario, California 91764

The Draft EIR addresses Aesthetics, Agriculture and Forestry Resources, Air Quality, Biological Resources, Cultural Resources, Energy, Geology and Solls, Greenhouse Gas Emissions, Hazards and Hazardous Materials, Hydrology and Water Quality, Land Use and Planning, Noise, Population and Housing, Public Services, Transportation and Traffic, Tribal Cultural Resources, and Utilities and Service Systems, as well as alternatives, potential growth-inducing impacts, and cumulative impacts. A significant unavoidable environmental impact anticipated as a result of the Project could occur to the above resources noted in bold/italics.

CEQA also requires this NOA to specify if the Project site appears on any list of places containing hazardous materials. The Project site does not contain sites identified as meeting the "Cortese List" requirement (Government Code Section 65962.5).

Public Review Period: The Draft EIR is available for public review for a period of 45 days. In accordance with CEQA Guidelines Section 15105, should you have any comments, please provide written comments on the Draft EIR within the 45-day period between **December 22, 2023,** to **February 6, 2024**.

Public Comments: The City requests your careful review and consideration of the Draft EIR, and invites written comments from interested agencies, persons, and organizations regarding environmental issues identified in the Draft EIR. Please indicate a contact person for your agency or organization. Comments in response to this notice may be submitted to the City through close of business (5:30 PM) on **February 6, 2024**.

Public Hearing: Noticing for public hearings for this Project will be scheduled at a later time. Future public hearings for this Project will be held at the City of Ontario City Council Chambers at the City address below.

Lead Agency Contact: All comments must be submitted in writing to: Edmelynne V. Hutter, Senior Planner EHutter@ontarloca.gov

City of Ontario Planning Department 303 East "B" Street Ontario, CA 91764 (909) 395-2036

Inland Valley Daily Bulletin - SB Published: 12/22/23

Notice of Availability of a Draft **Environmental Impact Report**

303 East B Street, Ontario, California 91764 Phone: 909.395.2036 / Fax: 909.395.2420 CLERK OF THE BOARD

TO:

Property Owners, Responsible Agencies & Interested Parties equation on:

FROM:

City of Ontario, 303 East "B" Street, Ontario, CA 91764

SUBJECT:

NOTICE OF AVAILABILITY OF A DRAFT ENVIRONMENTAL IMPACT REPORT

Euclid Mixed Use Specific Plan Project State Clearinghouse No. 2023020281

NOTICE IS HEREBY GIVEN that a Draft Environmental Impact Report ("DEIR") has been prepared for the project identified below. Copies of the DEIR and all documents referenced in the DEIR are available for public review at the locations identified below, as-well-as on the City's website: https://www.ontarioca.gov/Planning/Reports/EnvironmentalImpact.

City of Ontario Planning Department 303 East B Street Ontario, CA 91764

City of Ontario City Clerk 303 East B Street Ontario, CA 91764 Ovitt Family Community Library 215 East C Street Ontario, CA 91764

The 45-day public review period begins on 12/22/2023. Comments will be received until 5:30 p.m. 2/6/2024. Comments will be accepted until 5:30 PM on 2/6/2024. Any property owner, responsible agency, or interested party wishing to comment on the DEIR must submit such comments, in writing, to the following contact person:

> Edmelynne V. Hutter, Senior Planner City of Ontario Planning Department 303 East B Street Ontario, CA 91764 P: (909) 395-2036 E: EHutter@ontarioca.gov

Project Title/File No.: Euclid Mixed Use Specific Plan EIR (PSP22-001)

Project Location: Euclid Mixed Use Specific Plan ("Project") and associated environmental impact report ("EIR") is located on an 84.1-acre site in the southwest portion of the City of Ontario, within San Bernardino County. The proposed Project site is bounded by Schaefer Avenue on the north, Sultana Avenue on the east, Edison Avenue on the south, and Euclid Avenue on the west. The Assessor Parcel Numbers (APNs) for this Project are 1053-071-01, -02, -03, -04; 1053-211-01, -02, -05; 1053-281-01, -02, -03, -04, -05, -07, -08; 1053-081-01, -02, -03, -04. Regional access to the Project site is provided by State Route 83 (SR-83; Euclid Avenue), which connects to State Route 60 (SR-60) and Interstate 10 (I-10) to the north; Interstate 15 (I-15) approximately 5.5 miles to the east; and State Route 71 (SR-71) approximately 4.3 miles to the west. SR-71 connects the Project to State Route 91 (SR-91) in unincorporated Riverside County. The Project site is currently occupied by agricultural uses, including the raising of livestock, dairy farming activities, a commercial nursery,

and numerous residential structures. Existing uses surrounding the Project site are similar to those on the site. Ongoing crop farming is located to the north of the Project site and a vacant property that was a former dairy farm is located to the east of the site. The property to the south is currently utilized for residential, farming, or trucking related uses. North across Schaefer Avenue is an existing dairy farm; south across Edison Avenue is an existing trucking facility; east across Sultana Avenue is vacant land and an existing trucking facility; west across Euclid Avenue, is the City of Chino with existing commercial and residential uses, and a truck/trailer storage yard.

Project Description: The proposed Project consists of a Specific Plan to allow for a business park and mixed-use development on 18 parcels covering 84.1 acres in the City. The development would include up to 290,110 square feet of commercial retail/office uses, up to 466 residential units, and 1,386,777 square feet of business park uses, and associated on-site and off-site infrastructure improvements. The Project site is anticipated to be developed in two phases within five Planning Areas (PAs), with only Phase I proposed at a project-level entitlement. Phase I would include PAs 1, 2A, and 3A, proposing the construction of 13 buildings. The 13 Phase I buildings would provide up to 1,473,026 square feet of business park and commercial retail/office mixed uses (the maximum development allowed in the proposed Specific Plan). The EIR conservatively evaluates the maximum development potential for Phases I and II as permitted in the proposed Specific Plan. Note that the applicant intends to process a Development Plan and Tentative Parcel Map for the Phase I Project following processing of the Project Specific Plan. Phase I is expected to start construction in 2024, with an anticipated opening year in 2032. The EIR also evaluates, at a "programmatic" level, potential future development of Phase II, comprised of PAs 2B and 3B. Phase II is being evaluated at the programmatic level for a number of reasons, consistent with CEQA Guidelines Section 15168 (Program EIR). These reasons include: 1) the Applicant does not own the parcels within the Phase II area (PAs 2B and PA 3B); 2) the Applicant does not have access to the Phase II area; 3) no specific development proposals have been identified for the Phase II area at this time; and 4) the Phase II area will be developed at an unknown, later date following Phase I. Therefore, this EIR appropriately evaluates the Phase II area at a programmatic level. Consistent with TOP, the Specific Plan proposes the Phase II area with a maximum development potential of 203,861 square feet of business park uses, in addition to up to 466 dwelling units. Combined, the Phase I and Phase II portions of the Specific Plan would allow up to 1,676,887 square feet of non-residential business park and commercial retail/office mixed uses in addition to up to 466 residential units.

The project site $[\Box \text{ is/} \boxtimes \text{ is not}]$ on a list of hazardous materials sites as defined by California Government Code Section 65962.5.

Discretionary actions associated with the Project:

- Certification of the Euclid Mixed Use Specific Plan Final EIR (SCH# 2023020281)
- Adoption of the Mitigation Monitoring and Reporting Program
- Adoption of the Euclid Mixed Use Specific Plan (PSP22-001)

Potential environmental impacts examined by the DEIR:

- Aesthetics
- Agricultural Resources
- Air Quality
- Biological Resources
- Cultural Resources
- Energy

Notice of Availability of a DEIR File No.: PSP22-001

- Geology and Soils
- Greenhouse Gas Emissions
- Hazards/Hazardous Materials
- Hydrology/Water Quality
- Land Use and Planning
- Noise
- Population/Housing
- Public Services
- Transportation
- Tribal Cultural Resources
- Utilities/Service Systems

Potentially significant impacts identified by the DEIR:

- Agricultural Resources
- Air Quality
- Biological Resources
- Cultural Resources
- Geology and Soils
- Greenhouse Gas Emissions
- Hazards and Hazardous Materials

Public Hearing: Noticing for public hearings for this Project will be scheduled at a later time. Future public hearings for this Project will be held at the City of Ontario City Council Chambers at 303 East B Street, Ontario, CA 91764.

Notice Mailing Date: 12/22/2023