#### **APPENDIX C**

**DEMONSTRATION OF REDUCED IMPORTED WATER RELIANCE** 

# DEMONSTRATION OF CONSISTENCY WITH THE DELTA PLAN FOR PARTICIPANTS IN COVERED ACTIONS (FY 2014-2015 THROUGH FY 2044-45) CITY OF ONTARIO

#### Introduction

Pursuant to the California Department of Water Resources (DWR), an urban water supplier that anticipates participating in or receiving water from a proposed project (or "covered action") such as a multi-year water transfer, conveyance facility, or new diversion that involves transferring water through, exporting water from, or using water in the Sacramento-San Joaquin Delta (Delta) should provide information in their 2015 and 2020 Urban Water Management Plans (UWMPs) for use in demonstrating consistency with Delta Plan Policy WR P1, "Reduce Reliance on the Delta Through Improved Regional Water Self-Reliance". In addition, pursuant to California Code of Regulations, Title 23, § 5003:

- (c)(1) Water suppliers that have done all of the following are contributing to reduced reliance on the Delta and improved regional self-reliance and are therefore consistent with this policy:
  - (A) Completed a current Urban or Agricultural Water Management Plan (Plan) which has been reviewed by the California Department of Water Resources for compliance with the applicable requirements of Water Code Division 6, Parts 2.55, 2.6, and 2.8;
  - (B) Identified, evaluated, and commenced implementation, consistent with the implementation schedule set forth in the Plan, of all programs and projects included in the Plan that are locally cost effective and technically feasible which reduce reliance on the Delta; and
  - (C) Included in the Plan, commencing in 2015, the expected outcome for measurable reduction in Delta reliance and improvement in regional self-reliance. The expected outcome for measurable reduction in Delta reliance and improvement in regional self-reliance shall be reported in the Plan as the reduction in the amount of water used, or in the percentage of water used, from the Delta watershed. For the purposes of reporting, water efficiency is considered a new source of water supply, consistent with Water Code section 1011(a).

The City is member agency of the Inland Empire Utilities Agency, which in turn is a member agency of the Metropolitan Water District of Southern California (MWD).

IEUA is an urban water supplier and a member agency of MWD. MWD provides IEUA with imported water supplies, which IEUA in turn distributes on a wholesale basis to its retail water purveyors. MWD is a contractor on the State Water Project (SWP) and, due to water quality considerations, all imported water supplies IEUA receives from MWD originate from the SWP system. The SWP system runs from Lake Oroville in Northern California to Southern California, crossing the Sacramento-San Joaquin Delta (Delta) along the way. MWD and its member agencies have made investments into water supply and demand management to regionally reduce impacts on the Delta. These investments bring regional reliability and reduced Delta reliance that make it infeasible for individual MWD member agencies to determine their individual Delta reliance. As a recipient of imported water from the SWP delivered via MWD, IEUA may indirectly receive water through a proposed covered action, such as a multi-year water transfer, conveyance facility, or new diversion that involves transferring water through, exporting water from, or using water in the Delta. Through this appendix, IEUA is providing information in its 2015 and 2020 UWMPs that may be used in the covered action process, to demonstrate consistency with Delta Plan Policy WR P1, Reduce Reliance on the Delta Through Improved Regional Water Self-Reliance (WR P1) [California Code of Regulations (CCR), Title 23, § 5003].

As noted in MWD's document entitled "Infeasibility of Accounting Supplies from the Delta Watershed for Metropolitan's Member Agencies and their Customers" (which is included in MWD's Regional 2020 UWMP and is provided as Attachment 1 below), "... Metropolitan's service area, as a whole, reduces reliance on the Delta through investments in non-Delta water supplies, local water supplies, and regional and local demand management measures. Metropolitan's member agencies coordinate reliance on the Delta through their membership in Metropolitan, a regional cooperative providing wholesale water service to its 26 member agencies. Accordingly, regional reliance on the

Delta can only be measured regionally—not by individual Metropolitan member agencies and not by the customers of those member agencies...."

In addition, MWD's 2020 Regional UWMP indicates "...in accordance with UMWP requirements, Metropolitan's member agencies and their customers (many of them, retail agencies) also report demands and supplies for their service areas in their respective UWMPs. The data reported by those agencies are not additive to the regional totals shown in Metropolitan's UWMP; rather, their reporting represents subtotals of the regional total and should be considered as such for the purposes of determining reduced reliance on the Delta...While the demands that Metropolitan's member agencies and their customers report in their UWMPs are a good reflection of the demands in their respective service areas, they do not adequately represent each water supplier's contributions to reduced reliance on the Delta. In order to calculate and report their reliance on water supplies from the Delta watershed, water suppliers that receive water from the Delta through other regional or wholesale water suppliers would need to determine the amount of Delta water that they receive from the regional or wholesale supplier. Two specific pieces of information are needed to accomplish this: first is the quantity of demands on the regional or wholesale water supplier that accurately reflect a supplier's contributions to reduced reliance on the Delta, and second is the quantity of a supplier's demands on the regional or wholesale water supplier that are met by supplies from the Delta watershed...For water suppliers that make investments in regional projects or programs it may be infeasible to quantify their demands on the regional or wholesale water supplier in a way that accurately reflects their individual contributions to reduced reliance on the Delta." Nonetheless, the City has taken proactive measures to help reduce regional reliance on imported water supplies and is discussed in the following sections.

#### **Reduced Reliance Calculation Tables**

Pursuant to DWR guidance, Tables C-1 through C-4 were prepared to show the potential reduction of reliance on imported water supplies for the City. The City has used these tables to demonstrate its reduced regional reliance on imported water supplies, but not

specifically Delta Watershed supplies. For each of the tables, a "Baseline year" was selected. Water demands during subsequent years (from 2015 through 2045 in five-year increments) were compared to water demands during the Baseline year. Table C-1 considers the population and service area water demands, and a demand per capita per day (GPCD) water use rate was calculated for each of the years following the Baseline year. The calculated reduction in GPCD from the Baseline year was then translated to an estimated amount of water saved as a result of water conservation measures. Table C-2 references the estimated amount of water saved from Table C-1 and shows the City's water demand without water use efficiency in effect.

A method of showing a reduced regional reliance on imported water supplies is to show increased regional self-reliance. Table C-3 lists water supply sources that contribute to regional self-reliance, including water use efficiency (from Table C-1 and C-2), recycled water use, and groundwater recharge activities. Regional self-reliance is expressed both in terms of acre feet (AF) and as a percentage.

The calculation of reduced regional reliance on imported water supplies is shown on Table C-4. Table C-4 also shows the percent change in imported water supplies relative to the City's total supply. A negative percent change of imported water supplies indicates the City has reduced regional reliance on imported water supplies.

Since the Baseline year, the City has decreased its reduced regional reliance on imported water supplies in 2015, 2020, and anticipates doing so through 2045.

The City has reduced regional reliance on imported water supplies in three separate categories, as follows:

 The demand in GPCD for the "Baseline" year was compared to the GPCDs in subsequent years (from 2015 through 2045, in five-year increments). The reduced GPCD multiplied by the population in these subsequent years is indicative of the potential reduced regional reliance on imported water supplies and is included in Table C-1

- The recycled water use from 2015 through 2045, in five-year increments, also demonstrates reduced regional reliance on imported water supplies and is included in Table C-1
- To the extent the Chino Basin Watermaster has, or plans to, use recycled water to replenish the Chino Basin, the City's proportional share (up to the total replenishment water obligation) will be included on Table C-1.

These categories of reduced regional reliance on imported water supplies are discussed below. The sum of the increased regional self-reliance and the sum of the reduced regional reliance on imported water supplies demand resulting from these categories is reflected on Table C-3 and Table C-4, respectively, and is reflective of the City's overall reduced reliance.

#### Reduced GPCD

Section 6.2.2 of the City's 2020 UWMP describes the management of the Chino Basin. The City relies on groundwater produced from the Chino Basin, which is adjudicated and managed by the Chino Basin Watermaster. To the extent the City historically (baseline during FY 2010-11) has produced groundwater in excess of its water rights, it has paid assessments to the Chino Basin Watermaster which are then used to purchase untreated imported water from the Inland Empire Utilities Agency, which is in turn purchased water from the Metropolitan Water District of Southern California. The untreated imported water subsequently is delivered to replenish the Chino Basin and to supplement local storm water replenishment. In addition, the City can purchase treated imported water from Water Facilities Authority which is ultimately provided by the Metropolitan Water District of Southern California.

Chapter 9 of the 2020 UWMP describes the Demand Management Measures which the City has implemented to reduce the amount water used by its customers. In addition, Chapter 6 of the 2020 UWMP describes the groundwater basin management measures

implemented by the Chino Basin Watermaster. Collectively these actions translate to a reduction in the GPCD usage rate which is described further in Chapter 5 of the 2020 UWMP. These actions directly impact total water demands, and consequently, the quantity of water which may be required from imported water supplies. Absent the proactive measures taken by the City, it is anticipated there may have been a greater demand on imported water.

Pursuant to DWR guidance, reduced regional reliance on imported water supplies can be demonstrated by first selecting a "Baseline" water demand, represented by total potable water demands during FY 2010-11. Table C-1 summarizes the "Baseline" water usage by the City in FY 2011-12 (assuming demand reduction efforts had not been implemented); actual water usage in 2015 and 2020; and projected water usage through 2045 in five-year increments. Furthermore, it is assumed that as of FY 2010-11 the City was already exceeding its water rights and was required to fund the purchase of untreated imported water supplies. Table C-2 demonstrates that if water conservation measures had not been implemented by the City, there may have been a greater reliance on untreated imported water supplies during subsequent years as compared to the Baseline year. However, as discussed below and shown in Table C-1, the reduced water demands have resulted in reduced regional reliance on imported water supplies as compared to the Baseline year.

The City's potable water demand of 33,938 AF during FY 2010-11, along with the corresponding service area population of approximately 159,946, were used to determine the Baseline GPCD. Subsequently, the actual demands for FY 2014-15 and FY 2019-20 were compared to the calculated population to obtain the recent GPCD which includes the water conservations measures which have been implemented (those demand management measures are described in Chapter 9 of the 2020 UWMP). The "Water Supplies Contributing to Regional Self-Reliance" are also provided in Table C-3. The differences between the Baseline GPCD and the 2015 and 2020 GPCDs are effectively considered a demonstration of the reduced regional reliance on imported water supplies with the understanding that any potential increased demand by the City resulting from

increased population could have been required from imported water supplies, absent the City's new water supplies which contribute to self-reliance. A similar methodology is used for the projected potable water demands (2020 UWMP Table 4-3) and populations (2020 UWMP Table 3-1).

#### Recycled Water Use

The City has also constructed infrastructure to deliver recycled water to its customers instead of continuing to use its potable water supplies. The historical recycled water demands for FY 2014-15 and FY 2019-20, along with the projected recycled water demands (from 2020 UWMP Table 4-3) are incorporated in Table C-1 and Table C-3. These quantities are in addition to the reduced demand resulting from decreased GPCD.

#### Recycled Water for Groundwater Replenishment

In 2000, the Chino Basin Watermaster developed the Chino Basin Optimum Basin Management Program (OBMP). As an integral part of the OBMP, Inland Empire Utilities Agency, Chino Basin Watermaster, Chino Basin Water Conservation District, and San Bernardino County Flood Control District implemented the Chino Basin Recycled Water Groundwater Recharge Program. This program was implemented to serve as a comprehensive water supply program to enhance local groundwater quality and to provide a source of reliable water for the Chino Basin through increased recharge of stormwater, imported water, and recycled water. Inland Empire Utilities Agency anticipates recharging as much as 16,000 AFY of recycled water. The recharged water hypothetically assigned to the City is based on the City's share (20.742%) of the Chino Basin's current Operating Safe Yield (131,000 AFY) multiplied by the amount of recycled water replenished and is shown on Table C-3. Therefore, the benefit to each producer in the Chino Basin is based on the proportional share of its anticipated production to the total Chino Basin production.

The decrease in GPCD and increase in recycled water use compared to the Baseline year has resulted in an overall decrease in regional reliance on imported water supplies. As shown in Table C-4, the percentage of imported water supplies relative to the City's total supply has decreased, and is projected to decrease, from the percentage in the Baseline year.

#### Metropolitan Water District of Southern California

In addition, as the wholesale provider, the Metropolitan Water District of Southern California has included a detailed discussion regarding measurable reduction in Delta reliance in Appendix 11 for 2015 and 2020 as part of its 2015 Regional Urban Water Management Plan and 2020 Regional Urban Water Management Plan, respectively, and are also included in Attachment 1 below.

#### Inland Empire Utilities Agency

As the wholesale provider, IEUA has included a detailed discussion regarding measurable reduction in Delta reliance in Appendix G for 2015 and 2020 as part of its 2020 Regional Urban Water Management Plan, respectively, and is also included in Attachment 2 below.

#### 2015 UWMP Appendix C

The information contained in this Appendix B is also intended to be a new Appendix C attached to the City of Ontario's 2015 UWMP consistent with WR P1 subsection (c)(1)(C) (Cal. Code Regs. tit. 23, § 5003). The City provided notice of the availability of the draft 2020 UWMP (including this Appendix B which will also be a new Appendix C to its 2015 UWMP) and WSCP and the public hearing to consider adoption of both plans and Appendix C to the 2015 UWMP in accordance with CWC Sections 10621(b) and 10642, and Government Code Section 6066, and Chapter 17.5 (starting with Section 7290) of Division 7 of Title 1 of the Government Code. The notice of availability of the documents

was sent to the agencies, cities, and counties described in Chapter 10 of the 2020 UWMP. In addition, a public notice advertising the public hearing was published in the newspapers during the weeks of June 1, 2021 and June 8, 2021. Copies of: (1) the notification letter sent to the agencies, cities, and counties, and (2) the notice published in the newspapers are included in the 2020 UWMP Appendix D.

Thus, this Appendix B to the City's 2020 UWMP, which was adopted with the City's 2020 UWMP, will also be recognized and treated as Appendix C to the City's 2015 UWMP. The City held the public hearing for the draft 2020 UWMP, draft WSCP, and draft Addendum (Appendix C) to the 2015 UWMP on June 15, 2021, at the City Council meeting. On June 15, 2021, the City Council determined that the 2020 UWMP and the WSCP accurately represent the water resources plan for the City's service area. The City Council determined that Appendix B to the 2020 UWMP and Addendum (Appendix C) to the 2015 UWMP includes all the elements described in Delta Plan Policy WR P1, Reduce Reliance on the Delta Through Improved Regional Water Self-Reliance (Cal. Code Regs. tit. 23, § 5003), which need to be included in a water supplier's UWMP to support a certification of consistency for a future covered action. As stated in Resolutions 2021-59, 2021-60, and 2021-61 the City Council adopted the 2020 UWMP, the WSCP, and Addendum (Appendix C) to the 2015 UWMP, respectively and authorized their submittal to the State of California. Copies of Resolution 2021-59, 2021-60, and 2021-61 are included in the 2020 UWMP Appendix R.

# Reduced Reliance Calculation - Ontario Municipal Utilities Company

Table C-1: Optional Calculation of Water Use Efficiency -To be completed if Water Supplier does not specifically estimate Water Use Efficiency as a supply

| Service Area Water Use Efficiency Demands                            | Baseline           |         | 0000    | L       | 0000    | L       | 0,00    | 2045               |
|----------------------------------------------------------------------|--------------------|---------|---------|---------|---------|---------|---------|--------------------|
| (Acre-Feet)                                                          | (2010)             | 5075    | 2020    | 5072    | 2030    | 2035    | 2040    | (Optional)         |
| Service Area Water Demands with Water Use Efficiency Accounted For   | 39,681             | 41,226  | 39,921  | 52,550  | 58,513  | 828'89  | 73,668  | 73,668             |
| Non-Potable Water Demands                                            | 5,743              | 860'8   | 7,812   | 12,168  | 13,465  | 14,762  | 16,059  | 16,059             |
| Potable Service Area Demands with Water Use Efficiency Accounted For | 33,938             | 33,128  | 32,109  | 40,382  | 45,048  | 49,076  | 609'25  | 57,609             |
|                                                                      |                    |         |         |         |         |         |         |                    |
| Total Service Area Population                                        | Baseline<br>(2010) | 2015    | 2020    | 2025    | 2030    | 2035    | 2040    | 2045<br>(Optional) |
| Service Area Population                                              | 159,946            | 168,777 | 178,409 | 232,583 | 266,339 | 300,008 | 362,903 | 362,903            |
|                                                                      |                    |         |         |         |         |         |         |                    |
| Water Use Efficiency Since Baseline (Acre-Feet)                      | Baseline<br>(2010) | 2015    | 2020    | 2025    | 2030    | 2035    | 2040    | 2045<br>(Optional) |
| Per Capita Water Use (GPCD)                                          | 189                | 175     | 161     | 155     | 151     | 146     | 142     | 142                |
| Change in Per Capita Water Use from Baseline (GPCD)                  |                    | (14)    | (29)    | (34)    | (38)    | (43)    | (48)    | (48)               |
| Estimated Water Use Efficiency Since Baseline                        |                    | 2,684   | 5,746   | 8,969   | 11,465  | 14,599  | 19,393  | 19,393             |
|                                                                      |                    |         |         |         |         |         |         |                    |

Table C-2: Calculation of Service Area Water Demands Without Water Use Efficiency

| (0100)                                                                         |        |        | -      |        |        | -      | 2045       |
|--------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|------------|
| (Acre-Feet)                                                                    | 2015   | 2020   | 2025   | 2030   | 2035   | 2040   | (Optional) |
| Service Area Water Demands with Water Use Efficiency Accounted For             | 11,226 | 39,921 | 52,550 | 58,513 | 63,838 | 73,668 | 73,668     |
| Reported Water Use Efficiency or Estimated Water Use Efficiency Since Baseline | 2,684  | 5,746  | 8,969  | 11,465 | 14,599 | 19,393 | 19,393     |
| Service Area Water Demands without Water Use Efficiency Accounted For 39,681   | 43,910 | 45,667 | 61,518 | 826'69 | 78,437 | 93,061 | 93,061     |

Table C-3: Calculation of Supplies Contributing to Regional Self-Reliance

| Water Supplies Contributing to Regional Self-Reliance (Acre-Feet)                 | Baseline<br>(2010) | 2015   | 2020   | 2025   | 2030   | 2035   | 2040   | 2045<br>(Optional) |
|-----------------------------------------------------------------------------------|--------------------|--------|--------|--------|--------|--------|--------|--------------------|
| Water Use Efficiency                                                              | 1                  | 2,684  | 5,746  | 696'8  | 11,465 | 14,599 | 19,393 | 19,393             |
| Water Recycling                                                                   | 5,743              | 860'8  | 7,812  | 12,168 | 13,465 | 14,762 | 16,059 | 16,059             |
| Stormwater Capture and Use                                                        |                    |        |        |        |        |        |        |                    |
| Advanced Water Technologies                                                       |                    |        |        |        |        |        |        |                    |
| Conjunctive Use Projects                                                          |                    |        |        |        |        |        |        |                    |
| Local and Regional Water Supply and Storage Projects                              |                    |        |        |        |        |        |        |                    |
| Other Programs and Projects the Contribute to Regional Self-Reliance <sup>1</sup> | 1,306              | 2,248  | 2,775  | 2,702  | 2,843  | 3,085  | 3,371  | 3,371              |
| Water Supplies Contributing to Regional Self-Reliance                             | 7,049              | 13,030 | 16,334 | 23,839 | 27,773 | 32,446 | 38,823 | 38,823             |
|                                                                                   |                    |        |        |        |        |        |        |                    |
| Service Area Water Demands without Water Use Efficiency (Acre-Feet)               | Baseline<br>(2010) | 2015   | 2020   | 2025   | 2030   | 2035   | 2040   | 2045<br>(Optional) |
| Service Area Water Demands without Water Use Efficiency Accounted For             | 39,681             | 43,910 | 45,667 | 61,518 | 826'69 | 78,437 | 93,061 | 93,061             |
|                                                                                   |                    |        |        |        |        |        |        |                    |
| Change in Regional Self Reliance (Acre-Feet)                                      | Baseline<br>(2010) | 2015   | 2020   | 2025   | 2030   | 2035   | 2040   | 2045<br>(Optional) |
| Water Supplies Contributing to Regional Self-Reliance                             | 7,049              | 13,030 | 16,334 | 23,839 | 27,773 | 32,446 | 38,823 | 38,823             |
| Change in Water Supplies Contributing to Regional Self-Reliance                   |                    | 5,982  | 9,285  | 16,790 | 20,724 | 25,397 | 31,775 | 31,775             |
| Percent Change in Regional Self Reliance                                          | Baseline           | 1500   | 0000   | 1000   | 0000   | 7000   | 9500   | 2045               |
| (As Percent of Demand w/out WUE)                                                  | (2010)             | 2015   | 2020   | 2025   | 2030   | 2035   | 2040   | (Optional)         |
| Percent of Water Supplies Contributing to Regional Self-Reliance                  | 17.8%              | 29.7%  | 32.8%  | 38.8%  | 39.7%  | 41.4%  | 41.7%  | 41.7%              |
| Change in Percent of Water Supplies Contributing to Regional Self-Reliance        |                    | 11.9%  | 18.0%  | 21.0%  | 21.9%  | 23.6%  | 24.0%  | 24.0%              |

Table C-4: Calculation of Reliance on Water Supplies from the Delta Watershed

| Water Supplies from the Delta Watershed<br>(Acre-Feet)                                    | Baseline<br>(2010) | 2015   | 2020    | 2025   | 2030   | 2035   | 2040   | 2045<br>(Optional) |
|-------------------------------------------------------------------------------------------|--------------------|--------|---------|--------|--------|--------|--------|--------------------|
| CVP/SWP Contract Supplies                                                                 |                    |        |         |        |        |        |        |                    |
| Delta/Delta Tributary Diversions                                                          |                    |        |         |        |        |        |        |                    |
| Transfers and Exchanges                                                                   |                    |        |         |        |        |        |        |                    |
| Other Water Supplies from the Delta Watershed <sup>2</sup>                                | 9,824              | 10,703 | 6,513   | 11,000 | 13,000 | 15,000 | 17,000 | 17,000             |
| Total Water Supplies from the Delta Watershed                                             | 9,824              | 10,703 | 6,513   | 11,000 | 13,000 | 15,000 | 17,000 | 17,000             |
|                                                                                           |                    |        |         |        |        |        |        |                    |
| Service Area Water Demands without Water Use Efficiency (Acre-Feet)                       | Baseline<br>(2010) | 2015   | 2020    | 2025   | 2030   | 2035   | 2040   | 2045<br>(Optional) |
| Service Area Water Demands without Water Use Efficiency Accounted For                     | 39,681             | 43,910 | 45,667  | 61,518 | 826'69 | 78,437 | 93,061 | 93,061             |
|                                                                                           |                    |        |         |        |        |        |        |                    |
| Change in Supplies from the Delta Watershed<br>(Acre-Feet)                                | Baseline<br>(2010) | 2015   | 2020    | 2025   | 2030   | 2035   | 2040   | 2045<br>(Optional) |
| Water Supplies from the Delta Watershed                                                   | 9,824              | 10,703 | 6,513   | 11,000 | 13,000 | 15,000 | 17,000 | 17,000             |
| Change in Water Supplies from the Delta Watershed                                         |                    | 879    | (3,311) | 1,176  | 3,176  | 5,176  | 7,176  | 7,176              |
| Percent Change in Supplies from the Delta Watershed<br>(As a Percent of Demand w/out WUE) | Baseline<br>(2010) | 2015   | 2020    | 2025   | 2030   | 2035   | 2040   | 2045<br>(Optional) |
| Percent of Water Supplies from the Delta Watershed                                        | 24.8%              | 24.4%  | 14.3%   | 17.9%  | 18.6%  | 19.1%  | 18.3%  | 18.3%              |
| Change in Percent of Water Supplies from the Delta Watershed                              |                    | -0.4%  | -10.5%  | %6:9-  | -6.2%  | -2.6%  | -6.5%  | -6.5%              |
|                                                                                           |                    |        |         |        |        |        |        |                    |

Baseline Year is FY 2010-11

1 Represents groundwater recharge of recycled water made by IEUA within the Chino Basin. Groundwater recharge by IEUA is projected to range from 13,000 AFY to 16,000 AFY through 2045. Water supply available to OMUC is based on OMUC's share of the Safe Yield (20.742%).

 $^2$  Represents imported untreated water from Water Facilities Authority/Inland Empire Utilities Agency

## APPENDIX B ATTACHMENT 1

- Infeasibility of Accounting Supplies from the Delta Watershed for Metropolitan's Member Agencies and their Customers
- Appendix 11 Addendum to the Metropolitan Water District of Southern
   California's 2015 Urban Water Management Plan
- Appendix 11 "Quantifying Regional Self-Reliance and Reliance on Water Supplies from the Delta Watershed", Metropolitan Water District of Southern California's 2020 Urban Water Management Plan

## Infeasibility of Accounting Supplies from the Delta Watershed for Metropolitan's Member Agencies and their Customers

Metropolitan's service area, as a whole, reduces reliance on the Delta through investments in non-Delta water supplies, local water supplies, and regional and local demand management measures. Metropolitan's member agencies coordinate reliance on the Delta through their membership in Metropolitan, a regional cooperative providing wholesale water service to its 26 member agencies. Accordingly, regional reliance on the Delta can only be measured regionally—not by individual Metropolitan member agencies and not by the customers of those member agencies.

Metropolitan's member agencies, and those agencies' customers, indirectly reduce reliance on the Delta through their collective efforts as a cooperative. Metropolitan's member agencies do not control the amount of Delta water they receive from Metropolitan. Metropolitan manages a statewide integrated conveyance system consisting of its participation in the State Water Project (SWP), its Colorado River Aqueduct (CRA) including Colorado River water resources, programs and water exchanges, and its regional storage portfolio. Along with the SWP, CRA, storage programs, and Metropolitan's conveyance and distribution facilities, demand management programs increase the future reliability of water resources for the region. In addition, demand management programs provide system-wide benefits by decreasing the demand for imported water, which helps to decrease the burden on the district's infrastructure and reduce system costs, and free up conveyance capacity to the benefit of all member agencies.

Metropolitan's costs are funded almost entirely from its service area, with the exception of grants and other assistance from government programs. Most of Metropolitan's revenues are collected directly from its member agencies. Properties within Metropolitan's service area pay a property tax that currently provides approximately 8 percent of the fiscal year 2021 annual budgeted revenues. The rest of Metropolitan's costs are funded through rates and charges paid by Metropolitan's member agencies for the wholesale services it provides to them.¹ Thus, Metropolitan's member agencies fund nearly all operations Metropolitan undertakes to reduce reliance on the Delta, including Colorado River Programs, storage facilities, Local Resources Programs and Conservation Programs within Metropolitan's service area.

Because of the integrated nature of Metropolitan's systems and operations, and the collective nature of Metropolitan's regional efforts, it is infeasible to quantify each of Metropolitan member agencies' individual reliance on the Delta. It is infeasible to attempt to segregate an entity and a system that were designed to work as an integrated regional cooperative.

In addition to the member agencies funding Metropolitan's regional efforts, they also invest in their own local programs to reduce their reliance on any imported water. Moreover, the customers of those member agencies may also invest in their own local programs to reduce water demand. However, to the extent those efforts result in reduction of demands on Metropolitan, that reduction does not equate to a like reduction of reliance on the Delta. Demands on Metropolitan are not commensurate with demands on the Delta because most of Metropolitan member agencies receive blended resources from

<sup>&</sup>lt;sup>1</sup> A standby charge is collected from properties within the service areas of 21 of Metropolitan's 26 member agencies, ranging from \$5 to \$14.20 per acre annually, or per parcel if smaller than an acre. Standby charges go towards those member agencies' obligations to Metropolitan for the Readiness-to-Serve Charge. The total amount collected annually is approximately \$43.8 million, approximately 2 percent of Metropolitan's fiscal year 2021 annual budgeted revenues.

Metropolitan as determined by Metropolitan—not the individual member agency—and for most member agencies, the blend varies from month-to-month and year-to-year due to hydrology, operational constraints, use of storage and other factors.

#### Colorado River Programs

As a regional cooperative of member agencies, Metropolitan invests in programs to ensure the continued reliability and sustainability of Colorado River supplies. Metropolitan was established to obtain an allotment of Colorado River water, and its first mission was to construct and operate the CRA. The CRA consists of five pumping plants, 450 miles of high voltage power lines, one electric substation, four regulating reservoirs, and 242 miles of aqueducts, siphons, canals, conduits and pipelines terminating at Lake Mathews in Riverside County. Metropolitan owns, operates, and manages the CRA. Metropolitan is responsible for operating, maintaining, rehabilitating, and repairing the CRA, and is responsible for obtaining and scheduling energy resources adequate to power pumps at the CRA's five pumping stations.

Colorado River supplies include Metropolitan's basic Colorado River apportionment, along with supplies that result from existing and committed programs, including supplies from the Imperial Irrigation District (IID)-Metropolitan Conservation Program, the implementation of the Quantification Settlement Agreement (QSA) and related agreements, and the exchange agreement with San Diego County Water Authority (SDCWA). The QSA established the baseline water use for each of the agreement parties and facilitates the transfer of water from agricultural agencies to urban uses. Since the QSA, additional programs have been implemented to increase Metropolitan's CRA supplies. These include the PVID Land Management, Crop Rotation, and Water Supply Program, as well as the Lower Colorado River Water Supply Project. The 2007 Interim Guidelines provided for the coordinated operation of Lake Powell and Lake Mead, as well as the Intentionally Created Surplus (ICS) program that allows Metropolitan to store water in Lake Mead.

#### Storage Investments/Facilities

Surface and groundwater storage are critical elements of Southern California's water resources strategy and help Metropolitan reduce its reliance on the Delta. Because California experiences dramatic swings in weather and hydrology, storage is important to regulate those swings and mitigate possible supply shortages. Surface and groundwater storage provide a means of storing water during normal and wet years for later use during dry years, when imported supplies are limited. The Metropolitan system, for purposes of meeting demands during times of shortage, regulating system flows, and ensuring system reliability in the event of a system outage, provides over 1,000,000 acre-feet of system storage capacity. Diamond Valley Lake provides 810,000 acre-feet of that storage capacity, effectively doubling Southern California's previous surface water storage capacity. Other existing imported water storage available to the region consists of Metropolitan's raw water reservoirs, a share of the SWP's raw water reservoirs in and near the service area, and the portion of the groundwater basins used for conjunctive-use storage.

Since the early twentieth century, DWR and Metropolitan have constructed surface water reservoirs to meet emergency, drought/seasonal, and regulatory water needs for Southern California. These reservoirs include Pyramid Lake, Castaic Lake, Elderberry Forebay, Silverwood Lake, Lake Perris, Lake Skinner, Lake Mathews, Live Oak Reservoir, Garvey Reservoir, Palos Verdes Reservoir, Orange County Reservoir, and Metropolitan's Diamond Valley Lake (DVL). Some reservoirs such as Live Oak Reservoir, Garvey Reservoir, Palos Verdes Reservoir, and Orange County Reservoir, which have a total combined capacity of about 3,500 AF, are used solely for regulating purposes. The total gross storage capacity for

the larger remaining reservoirs is 1,757,600 AF. However, not all of the gross storage capacity is available to Metropolitan; dead storage and storage allocated to others reduce the amount of storage that is available to Metropolitan to 1,665,200 AF.

Conjunctive use of the aquifers offers another important source of dry year supplies. Unused storage in Southern California groundwater basins can be used to optimize imported water supplies, and the development of groundwater storage projects allows effective management and regulation of the region's major imported supplies from the Colorado River and SWP. Over the years, Metropolitan has implemented conjunctive use through various programs in the service area; the following table lists the groundwater conjunctive use programs that have been developed in the region.

| Program                                                                        | Metropolitan<br>Agreement<br>Partners | Program Term           | Max<br>Storage AF | Dry-Year<br>Yield<br>AF/Yr |
|--------------------------------------------------------------------------------|---------------------------------------|------------------------|-------------------|----------------------------|
| Long Beach Conjunctive Use<br>Storage Project (Central Basin)                  | Long Beach                            | June 2002-2027         | 13,000            | 4,300                      |
| Foothill Area Groundwater Storage<br>Program (Monkhill/ Raymond Basin)         | Foothill MWD                          | February 2003-<br>2028 | 9,000             | 3,000                      |
| Orange County Groundwater<br>Conjunctive Use Program                           | MWDOC<br>OCWD                         | June 2003-2028         | 66,000+           | 22,000                     |
| Chino Basin Conjunctive Use<br>Programs                                        | IEUA<br>TVMWD<br>Watermaster          | June 2003-2028         | 100,000           | 33,000                     |
| Live Oak Basin Conjunctive Use<br>Project<br>(Six Basins)                      | TVMWD<br>City of La Verne             | October 2002-<br>2027  | 3,000             | 1,000                      |
| City of Compton Conjunctive Use<br>Project<br>(Central Basin)                  | Compton                               | February 2005-<br>2030 | 2,289             | 763                        |
| Long Beach Conjunctive Use<br>Program Expansion in Lakewood<br>(Central Basin) | Long Beach                            | July 2005-2030         | 3,600             | 1,200                      |
| Upper Claremont Basin<br>Groundwater Storage Program<br>(Six Basins)           | TVMWD                                 | Sept. 2005- 2030       | 3,000             | 1,000                      |
| Elsinore Basin Conjunctive Use<br>Storage Program                              | Western MWD<br>Elsinore Valley<br>MWD | May 2008- 2033         | 12,000            | 4,000                      |
| TOTAL                                                                          |                                       |                        | 211,889           | 70,263                     |

#### Metropolitan Demand Management Programs

Demand management costs are Metropolitan's expenditures for funding local water resource development programs and water conservation programs. These Demand Management Programs incentivize the development of local water supplies and the conservation of water to reduce the need to import water to deliver to Metropolitan's member agencies. These programs are implemented below the delivery points between Metropolitan's and its member agencies' distribution systems and, as such, do not add any water to Metropolitan's supplies. Rather, the effect of these downstream programs is to

produce a local supply of water for the local agencies and to reduce demands by member agencies for water imported through Metropolitan's system. The following discussions outline how Metropolitan funds local resources and conservation programs for the benefit of all of its member agencies and the entire Metropolitan service area. Notably, the history of demand management by Metropolitan's member agencies and the local agencies that purchase water from Metropolitan's members has spanned more than four decades. The significant history of the programs is another reason it would be difficult to attempt to assign a portion of such funding to any one individual member agency.

#### Local Resources Programs

In 1982, Metropolitan began providing financial incentives to its member agencies to develop new local supplies to assist in meeting the region's water needs. Because of Metropolitan's regional distribution system, these programs benefit all member agencies regardless of project location because they help to increase regional water supply reliability, reduce demands for imported water supplies, decrease the burden on Metropolitan's infrastructure, reduce system costs and free up conveyance capacity to the benefit of all the agencies that rely on water from Metropolitan.

For example, the Groundwater Replenishment System (GWRS) operated by the Orange County Water District is the world's largest water purification system for indirect potable reuse. It was funded, in part, by Metropolitan's member agencies through the Local Resources Program. Annually, the GWRS produces approximately 103,000 acre-feet of reliable, locally controlled, drought-proof supply of high-quality water to recharge the Orange County Groundwater Basin and protect it from seawater intrusion. The GWRS is a premier example of a regional project that significantly reduced the need to utilize imported water for groundwater replenishment in Metropolitan's service area, increasing regional and local supply reliability and reducing the region's reliance on imported supplies, including supplies from the State Water Project.

Metropolitan's local resource programs have evolved through the years to better assist Metropolitan's member agencies in increasing local supply production. The following is a description and history of the local supply incentive programs.

#### Local Projects Program

In 1982, Metropolitan initiated the Local Projects Program (LPP), which provided funding to member agencies to facilitate the development of recycled water projects. Under this approach, Metropolitan contributed a negotiated up-front funding amount to help finance project capital costs. Participating member agencies were obligated to reimburse Metropolitan over time. In 1986, the LPP was revised, changing the up-front funding approach to an incentive-based approach. Metropolitan contributed an amount equal to the avoided State Water Project pumping costs for each acre-foot of recycled water delivered to end-use consumers. This funding incentive was based on the premise that local projects resulted in the reduction of water imported from the Delta and the associated pumping cost. The incentive amount varied from year to year depending on the actual variable power cost paid for State Water Project imports. In 1990, Metropolitan's Board increased the LPP contribution to a fixed rate of \$154 per acre-foot, which was calculated based on Metropolitan's avoided capital and operational costs to convey, treat, and distribute water, and included considerations of reliability and service area demands.

#### **Groundwater Recovery Program**

The drought of the early 1990s sparked the need to develop additional local water resources, aside from recycled water, to meet regional demand and increase regional water supply reliability. In 1991, Metropolitan conducted the Brackish Groundwater Reclamation Study which determined that large

amounts of degraded groundwater in the region were not being utilized. Subsequently, the Groundwater Recovery Program (GRP) was established to assist the recovery of otherwise unusable groundwater degraded by minerals and other contaminants, provide access to the storage assets of the degraded groundwater, and maintain the quality of groundwater resources by reducing the spread of degraded plumes.

#### **Local Resources Program**

In 1995, Metropolitan's Board adopted the Local Resources Program (LRP), which combined the LPP and GRP into one program. The Board allowed for existing LPP agreements with a fixed incentive rate to convert to the sliding scale up to \$250 per acre-foot, similar to GRP incentive terms. Those agreements that were converted to LRP are known as "LRP Conversions."

#### Competitive Local Projects Program

In 1998, the Competitive Local Resources Program (Competitive Program) was established. The Competitive Program encouraged the development of recycled water and recovered groundwater through a process that emphasized cost-efficiency to Metropolitan, timing new production according to regional need while minimizing program administration cost. Under the Competitive Program, agencies requested an incentive rate up to \$250 per acre-foot of production over 25 years under a Request for Proposals (RFP) for the development of up to 53,000 acre-feet per year of new water recycling and groundwater recovery projects. In 2003, a second RFP was issued for the development of an additional 65,000 acre-feet of new recycled water and recovered groundwater projects through the LRP.

#### Seawater Desalination Program

Metropolitan established the Seawater Desalination Program (SDP) in 2001 to provide financial incentives to member agencies for the development of seawater desalination projects. In 2014, seawater desalination projects became eligible for funding under the LRP, and the SDP was ended.

#### 2007 Local Resources Program

In 2006, a task force comprised of member agency representatives was formed to identify and recommend program improvements to the LRP. As a result of the task force process, the 2007 LRP was established with a goal of 174,000 acre-feet per year of additional local water resource development. The new program allowed for an open application process and eliminated the previous competitive process. This program offered sliding scale incentives of up to \$250 per acre-foot, calculated annually based on a member agency's actual local resource project costs exceeding Metropolitan's prevailing water rate.

#### 2014 Local Resources Program

A series of workgroup meetings with member agencies was held to identify the reasons why there was a lack of new LRP applications coming into the program. The main constraint identified by the member agencies was that the \$250 per acre-foot was not providing enough of an incentive for developing new projects due to higher construction costs to meet water quality requirements and to develop the infrastructure to reach end-use consumers located further from treatment plants. As a result, in 2014, the Board authorized an increase in the maximum incentive amount, provided alternative payment structures, included onsite retrofit costs and reimbursable services as part of the LRP, and added eligibility for seawater desalination projects. The current LRP incentive payment options are structured as follows:

- Option 1 Sliding scale incentive up to \$340/AF for a 25-year agreement term
- Option 2 Sliding scale incentive up to \$475/AF for a 15-year agreement term
- Option 3 Fixed incentive up to \$305/AF for a 25-year agreement term

#### On-site Retrofit Programs

In 2014, Metropolitan's Board also approved the On-site Retrofit Pilot Program which provided financial incentives to public or private entities toward the cost of small-scale improvements to their existing irrigation and industrial systems to allow connection to existing recycled water pipelines. The On-site Retrofit Pilot Program helped reduce recycled water retrofit costs to the end-use consumer which is a key constraint that limited recycled water LRP projects from reaching full production capacity. The program incentive was equal to the actual eligible costs of the on-site retrofit, or \$975 per acre-foot of up-front cost, which equates to \$195 per acre-foot for an estimated five years of water savings (\$195/AF x 5 years) multiplied by the average annual water use in previous three years, whichever is less. The Pilot Program lasted two years and was successful in meeting its goal of accelerating the use of recycled water.

In 2016, Metropolitan's Board authorized the On-site Retrofit Program (ORP), with an additional budget of \$10 million. This program encompassed lessons learned from the Pilot Program and feedback from member agencies to make the program more streamlined and improve its efficiency. As of fiscal year 2019/20, the ORP has successfully converted 440 sites, increasing the use of recycled water by 12,691 acre-feet per year.

#### Stormwater Pilot Programs

In 2019, Metropolitan's Board authorized both the Stormwater for Direct Use Pilot Program and a Stormwater for Recharge Pilot Program to study the feasibility of reusing stormwater to help meet regional demands in Southern California. These pilot programs are intended to encourage the development, monitoring, and study of new and existing stormwater projects by providing financial incentives for their construction/retrofit and monitoring/reporting costs. These pilot programs will help evaluate the potential benefits delivered by stormwater capture projects and provide a basis for potential future funding approaches. Metropolitan's Board authorized a total of \$12.5 million for the stormwater pilot programs (\$5 million for the District Use Pilot and \$7.5 million for the Recharge Pilot).

#### Current Status and Results of Metropolitan's Local Resource Programs

Today, nearly one-half of the total recycled water and groundwater recovery production in the region has been developed with an incentive from one or more of Metropolitan's local resource programs. During fiscal year 2020, Metropolitan provided about \$13 million for production of 71,000 acre-feet of recycled water for non-potable and indirect potable uses. Metropolitan provided about \$4 million to support projects that produced about 50,000 acre-feet of recovered groundwater for municipal use. Since 1982, Metropolitan has invested \$680 million to fund 85 recycled water projects and 27 groundwater recovery projects that have produced a cumulative total of about 4 million acre-feet.

#### Conservation Programs

Metropolitan's regional conservation programs and approaches have a long history. Decades ago, Metropolitan recognized that demand management at the consumer level would be an important part of balancing regional supplies and demands. Water conservation efforts were seen as a way to reduce the need for imported supplies and offset the need to transport or store additional water into or within the Metropolitan service area. The actual conservation of water takes place at the retail consumer level. Regional conservation approaches have proven to be effective at reaching retail consumers throughout Metropolitan's service area and successfully implementing water saving devices, programs and practices. Through the pooling of funding by Metropolitan's member agencies, Metropolitan is able to engage in regional campaigns with wide-reaching impact. Regional investments in demand management programs, of which conservation is a key part along with local supply programs, benefit all member agencies regardless of project location. These programs help to increase regional water supply

reliability, reduce demands for imported water supplies, decrease the burden on Metropolitan's infrastructure, reduce system costs, and free up conveyance capacity to the benefit of all member agencies.

#### *Incentive-Based Conservation Programs*

#### Conservation Credits Program

In 1988, Metropolitan's Board approved the Water Conservation Credits Program (Credits Program). The Credits Program is similar in concept to the Local Projects Program (LPP). The purpose of the Credits Program is to encourage local water agencies to implement effective water conservation projects through the use of financial incentives. The Credits Program provides financial assistance for water conservation projects that reduce demands on Metropolitan's imported water supplies and require Metropolitan's assistance to be financially feasible.

Initially, the Credits Program provided 50 percent of a member agency's program cost, up to a maximum of \$75 per acre-foot of estimated water savings. The \$75 Base Conservation Rate was established based Metropolitan's avoided cost of pumping SWP supplies. The Base Conservation Rate has been revisited by Metropolitan's Board and revised twice since 1988, from \$75 to \$154 per acre-foot in 1990 and from \$154 to \$195 per acre-foot in 2005.

In fiscal year 2020 Metropolitan processed more than 30,400 rebate applications totaling \$18.9 million.

#### Member Agency Administered Program

Some member agencies also have unique programs within their service areas that provide local rebates that may differ from Metropolitan's regional program. Metropolitan continues to support these local efforts through a member agency administered funding program that adheres to the same funding guidelines as the Credits Program. The Member Agency Administered Program allows member agencies to receive funding for local conservation efforts that supplement, but do not duplicate, the rebates offered through Metropolitan's regional rebate program.

#### Water Savings Incentive Program

There are numerous commercial entities and industries within Metropolitan's service area that pursue unique savings opportunities that do not fall within the general rebate programs that Metropolitan provides. In 2012, Metropolitan designed the Water Savings Incentive Program (WSIP) to target these unique commercial and industrial projects. In addition to rebates for devices, under this program, Metropolitan provides financial incentives to businesses and industries that created their own custom water efficiency projects. Qualifying custom projects can receive funding for permanent water efficiency changes that result in reduced potable demand.

#### Non-Incentive Conservation Programs

In addition to its incentive-based conservation programs, Metropolitan also undertakes additional efforts throughout its service area that help achieve water savings without the use of rebates. Metropolitan's non-incentive conservation efforts include:

- residential and professional water efficient landscape training classes
- water audits for large landscapes
- research, development and studies of new water saving technologies
- advertising and outreach campaigns
- community outreach and education programs
- advocacy for legislation, codes, and standards that lead to increased water savings

#### Current Status and Results of Metropolitan's Conservation Programs

Since 1990, Metropolitan has invested \$824 million in conservation rebates that have resulted in a cumulative savings of 3.27 million acre-feet of water. These investments include \$450 million in turf removal and other rebates during the last drought which resulted in 175 million square feet of lawn turf removed. During fiscal year 2020, 1.06 million acre-feet of water is estimated to have been conserved. This annual total includes Metropolitan's Conservation Credits Program; code-based conservation achieved through Metropolitan-sponsored legislation; building plumbing codes and ordinances; reduced consumption resulting from changes in water pricing; and pre-1990 device retrofits.

#### Infeasibility of Accounting Regional Investments in Reduced Reliance Below the Regional Level

The accounting of regional investments that contribute to reduced reliance on supplies from the Delta watershed is straightforward to calculate and report at the regional aggregate level. However, any similar accounting is infeasible for the individual member agencies or their customers. As described above, the region (through Metropolitan) makes significant investments in projects, programs and other resources that reduce reliance on the Delta. In fact, all of Metropolitan's investments in Colorado River supplies, groundwater and surface storage, local resources development and demand management measures that reduce reliance on the Delta are collectively funded by revenues generated from the member agencies through rates and charges.

Metropolitan's revenues cannot be matched to the demands or supply production history of an individual agency, or consistently across the agencies within the service area. Each project or program funded by the region has a different online date, useful life, incentive rate and structure, and production schedule. It is infeasible to account for all these things over the life of each project or program and provide a nexus to each member agency's contributions to Metropolitan's revenue stream over time. Accounting at the regional level allows for the incorporation of the local supplies and water use efficiency programs done by member agencies and their customers through both the regional programs and through their own specific local programs. As shown above, despite the infeasibility of accounting reduced Delta reliance below the regional level, Metropolitan's member agencies and their customers have together made substantial contributions to the region's reduced reliance.

#### References

 $\frac{http://www.mwdh2o.com/WhoWeAre/Board/Board-Meeting/Board%20Archives/2017/12-Dec/Reports/064863458.pdf}{Dec/Reports/064863458.pdf}$ 

http://www.mwdh2o.com/PDF About Your Water/Annual Achievement Report.pdf

http://www.mwdh2o.com/WhoWeAre/Board/Board-Meeting/Board%20Archives/2016/12-Dec/Reports/064845868.pdf

 $\frac{\text{http://www.mwdh2o.com/WhoWeAre/Board/Board-Meeting/Board\%20Archives/2012/05\%20-}{\%20\text{May/Letters/064774100.pdf}}$ 

 $\frac{\text{http://www.mwdh2o.com/WhoWeAre/Board/Board-Meeting/Board\%20Archives/2020/10\%20-}{\%20Oct/Letters/10132020\%20BOD\%209-3\%20B-L.pdf}$ 

 $\frac{\text{http://www.mwdh2o.com/WhoWeAre/Board/Board-Meeting/Board\%20Archives/2001/10-October/Letters/003909849.pdf}{\text{October/Letters/003909849.pdf}}$ 

Link to Metropolitan's 2020 UWMP once final

## **Appendix 11**

Addendum to
The Metropolitan Water District of Southern California's
2015 Urban Water Management Plan

Quantifying Regional Self-Reliance and Reduced Reliance on Water Supplies from the Delta Watershed June 2021

# Appendix 11 METROPOLITAN'S REDUCED DELTA RELIANCE REPORTING Addendum to Metropolitan's 2015 Urban Water Management Plan

#### A.11.1 Background

Under the Sacramento-San Joaquin Delta Reform Act of 2009, state and local public agencies proposing a covered action in the Delta, 1 prior to initiating the implementation of that action, must prepare a written certification of consistency with detailed findings as to whether the covered action is consistent with applicable Delta Plan policies and submit that certification to the Delta Stewardship Council. 2 Anyone may appeal a certification of consistency, and if the Delta Stewardship Council grants the appeal, the covered action may not be implemented until the agency proposing the covered action submits a revised certification of consistency, and either no appeal is filed, or the Delta Stewardship Council denies the subsequent appeal. 3

An urban water supplier that anticipates participating in or receiving water from a proposed covered action such as a multi-year water transfer, conveyance facility, or new diversion that involves transferring water through, exporting water from, or using water in the Delta should provide information in their 2015 and 2020 Urban Water Management Plans (UWMPs) that can then be used in the covered action process to demonstrate consistency with Delta Plan Policy WR P1, Reduce Reliance on the Delta Through Improved Regional Water Self-Reliance (WR P1).<sup>4</sup>

WR P1 details what is needed for a covered action to demonstrate consistency with reduced reliance on the Delta and improved regional self-reliance. WR P1 subsection (a) states that:

- (a) Water shall not be exported from, transferred through, or used in the Delta if all of the following apply:
  - (1) One or more water suppliers that would receive water as a result of the export, transfer, or use have failed to adequately contribute to reduced reliance on the Delta and improved regional self-reliance consistent with all of the requirements listed in paragraph (1) of subsection (c);
  - (2) That failure has significantly caused the need for the export, transfer, or use; and
  - (3) The export, transfer, or use would have a significant adverse environmental impact in the Delta.

WR P1 subsection (c)(1) further defines what adequately contributing to reduced reliance on the Delta means in terms of (a)(1) above.

- (c)(1) Water suppliers that have done all the following are contributing to reduced reliance on the Delta and improved regional self-reliance and are therefore consistent with this policy:
  - (A) Completed a current Urban or Agricultural Water Management Plan (Plan) which has been reviewed by the California Department of Water Resources for compliance with the applicable requirements of Water Code Division 6, Parts 2.55, 2.6, and 2.8;

<sup>&</sup>lt;sup>1</sup> Water Code, § 85057.5; Cal. Code Regs. tit. 23, § 5001.

<sup>&</sup>lt;sup>2</sup> Water Code, § 85225; Delta Plan, App. D.

<sup>&</sup>lt;sup>3</sup> Water Code, §§ 85225.10-85225.25; Delta Plan, App. D.

<sup>&</sup>lt;sup>4</sup> Cal. Code Regs., tit. 23, § 5003.

- (B) Identified, evaluated, and commenced implementation, consistent with the implementation schedule set forth in the Plan, of all programs and projects included in the Plan that are locally cost effective and technically feasible which reduce reliance on the Delta; and
- (C) Included in the Plan, commencing in 2015, the expected outcome for measurable reduction in Delta reliance and improvement in regional self-reliance. The expected outcome for measurable reduction in Delta reliance and improvement in regional self-reliance shall be reported in the Plan as the reduction in the amount of water used, or in the percentage of water used, from the Delta watershed. For the purposes of reporting, water efficiency is considered a new source of water supply, consistent with Water Code section 1011(a).

The analysis and documentation provided below include all of the elements described in WR P1(c)(1) that need to be included in a water supplier's UWMP to support a certification of consistency for a future covered action.

#### A.11.2 Summary of Expected Outcomes for Reduced Reliance on the Delta

As stated in WR P1(c)(1)(C), the policy requires that, commencing in 2015, UWMPs include expected outcomes for measurable reduction in Delta reliance and improved regional self-reliance. WR P1 further states that those outcomes shall be reported in the UWMP as the reduction in the amount of water used, or in the percentage of water used, from the Delta.

The expected outcomes for Metropolitan's Delta reliance and regional self-reliance were developed using the approach and guidance described in Appendix C of DWR's Urban Water Management Plan Guidebook 2020 (Guidebook Appendix C) issued in March 2021.

The data used in this analysis represent the total regional efforts of Metropolitan and its member agencies and their customers (many of them, retail agencies) and were developed in conjunction with Metropolitan's member agencies as part of the UWMP coordination process as described in Section 5 of Metropolitan's UWMP. In accordance with UMWP requirements, Metropolitan's member agencies and their customers (many of them, retail agencies) also report demands and supplies for their service areas in their respective UWMPs. The data reported by those agencies are not additive to the regional totals shown in Metropolitan's UWMP; rather, their reporting represents subtotals of the regional total and should be considered as such for the purposes of determining reduced reliance on the Delta.

While the demands that Metropolitan's member agencies and their customers report in their UWMPs are a good reflection of the demands in their respective service areas, they do not adequately represent each water supplier's contributions to reduced reliance on the Delta. In order to calculate and report their reliance on water supplies from the Delta watershed, water suppliers that receive water from the Delta through other regional or wholesale water suppliers would need to determine the amount of Delta water that they receive from the regional or wholesale supplier. Two specific pieces of information are needed to accomplish this: first is the quantity of demands on the regional or wholesale water supplier that accurately reflect a supplier's contributions to reduced reliance on the Delta, and second is the quantity of a supplier's demands on the regional or wholesale water supplier that are met by supplies from the Delta watershed.

For water suppliers that make investments in regional projects or programs it may be infeasible to quantify their demands on the regional or wholesale water supplier in a way that accurately reflects their individual contributions to reduced reliance on the Delta. Due to the extensive, long-standing and successful implementation of regional demand management and local resource

incentive programs in Metropolitan's service area, this infeasibility holds true for Metropolitan's members as well their customers. For Metropolitan's service area, reduced reliance on supplies from the Delta watershed can only be accurately accounted at the regional level, as is demonstrated in this analysis.

The following provides a summary of the near-term (2025) and long-term (2045) expected outcomes for Metropolitan's Delta reliance and regional self-reliance. The results show that as a region, Metropolitan and its members as well as their customers are measurably reducing reliance on the Delta and improving regional self-reliance, both as an amount of water used and as a percentage of water used.

#### Expected Outcomes for Regional Self-Reliance

- Near-term (2025) Normal water year regional self-reliance is expected to increase by 813 TAF from the 2010 baseline; this represents an increase of almost 25 percent of 2025 normal water year retail demands (Table A.11-2).
- Long-term (2045) Normal water year regional self-reliance is expected to increase by more than 1.28 MAF from the 2010 baseline, this represents an increase of more than 25 percent of 2045 normal water year retail demands (Table A.11-2).

#### Expected Outcomes for Reduced Reliance on Supplies from the Delta Watershed

- Near-term (2025) Normal water year reliance on supplies from the Delta watershed decreased by 301 TAF from the 2010 baseline, this represents a decrease of 3 percent of 2025 normal water year retail demands (Table A.11-3).
- Long-term (2045) Normal water year reliance on supplies from the Delta watershed decreased by 314 TAF from the 2010 baseline, this represents a decrease of just over 5 percent of 2045 normal water year retail demands (Table A.11-3).

#### A11.3 Demonstration of Reduced Reliance on the Delta

The methodology used to determine Metropolitan's reduced Delta reliance and improved regional self-reliance is consistent with the approach detailed in DWR's UWMP Guidebook Appendix C, including the use of narrative justifications for the accounting of supplies and the documentation of specific data sources. Some of the key assumptions underlying Metropolitan's demonstration of reduced reliance include:

- All data were obtained from the current 2020 UWMP or previously adopted UWMPs and represent average or normal water year conditions.
- All analyses were conducted at the service area level, and all data reflect the total contributions of Metropolitan and its members as well as their customers.
- No projects or programs that are described in the UWMPs as "Projects Under Development" were included in the accounting of supplies.

#### Baseline and Expected Outcomes

In order to calculate the expected outcomes for measurable reduction in Delta reliance and improved regional self-reliance, a baseline is needed to compare against. This analysis uses a normal water year representation of 2010 as the baseline, which is consistent with the approach described in the Guidebook Appendix C. Data for the 2010 baseline were taken from Metropolitan's 2005 UWMP as the UWMPs generally do not provide normal water year data for the year that they are adopted (i.e., 2005 UWMP forecasts begin in 2010, 2010 UWMP forecasts begin in 2015, and so on).

Consistent with the 2010 baseline data approach, the expected outcomes for reduced Delta reliance and improved regional self-reliance for 2015 and 2020 were taken from Metropolitan's 2010 and 2015 UWMPs respectively. Expected outcomes for 2025-2045 are from the current 2020 UWMP. Documentation of the specific data sources and assumptions are included in the discussions below.

#### Service Area Demands without Water Use Efficiency

In alignment with the Guidebook Appendix C, this analysis uses normal water year demands, rather than normal water year supplies to calculate expected outcomes in terms of the percentage of water used. Using normal water year demands serves as a proxy for the amount of supplies that would be used in a normal water year, which helps alleviate issues associated with how supply capability is presented to fulfill requirements of the Act versus how supplies might be accounted for to demonstrate consistency with WR P1.

Because WR P1 considers water use efficiency savings a source of water supply, water suppliers such as Metropolitan that explicitly calculate and report water use efficiency savings in their UWMP will need to make an adjustment to properly reflect normal water year demands in the calculation of reduced reliance. As explained in the Guidebook Appendix C, water use efficiency savings must be added back to the normal year demands to represent demands without water use efficiency savings accounted for; otherwise the effect of water use efficiency savings on regional self-reliance would be overestimated. Table A.11-1 shows the results of this adjustment for Metropolitan. Supporting narratives and documentation for all of the data shown in Table A.11-1 are provided below.

Table A.11-1
Demands without Water Use Efficiency Accounted For

| Total Service Area Water Demands                                | Baseline  | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
|-----------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| (Acre-Feet)                                                     | (2010)    | 2015      | 2020      | 2025      | 2030      | 2055      | 2040      | 2045      |
| Service Area Demands with Water Use Efficiency Accounted For    | 4,628,000 | 4,563,000 | 4,163,000 | 3,763,000 | 3,821,000 | 3,893,000 | 3,936,000 | 3,985,000 |
| Reported Water Use Efficiency                                   | 865,000   | 936,000   | 1,056,000 | 1,162,000 | 1,211,000 | 1,263,000 | 1,325,000 | 1,389,000 |
| Service Area Demands without Water Use Efficiency Accounted For | 5,493,000 | 5,499,000 | 5,219,000 | 4,925,000 | 5,032,000 | 5,156,000 | 5,261,000 | 5,374,000 |

#### Service Area Demands without Water Use Efficiency

The service area demands shown in Table A.11-1 represent the total retail water demands for Metropolitan's service area and include municipal and industrial demands, agricultural demands, seawater barrier demands, and storage replenishment demands. These demand types and the modeling methodologies used to calculate them are described in Section 2.2 and Appendix 1 of Metropolitan's UWMP.

#### Water Use Efficiency

The water use efficiency numbers shown in Table A.11-1 represent the total water use efficiency savings (conservation) for Metropolitan's region, including savings from active, code-based, price-effect and pre-1990 sources. These sources of water use efficiency and the methodologies used to calculate them are described in Section 2.2, Section 3.4, Section 3.7 and Appendix 1 of Metropolitan's UWMP.

The demand and water use efficiency data shown in Table A.11-1 were collected from the following sources:

- Baseline (2010) values Metropolitan's 2005 UWMP, Table 2-6: Metropolitan Regional Water Demand Average Year
- 2015 values Metropolitan's 2010 UWMP, Table 2-8: Metropolitan Regional Water Demands Average Year
- 2020 values Metropolitan's 2015 UWMP, Table 2-3: Metropolitan Regional Water Demands Average Year
- 2025-2045 values Metropolitan's 2020 UWMP, Table 2-3: Metropolitan Regional Water Demands Normal Water Year

#### Supplies Contributing to Regional Self-Reliance

Water Supplies Contributing to Regional Self-Reliance

(Acre-Feet)

Percent Change in Regional Self Reliance

(As Percent of Demand w/out WUE)

Change in Percent of Supplies Contributing to Regional Self-Reliance

Percent of Supplies Contributing to Regional Self-Reliance

For a covered action to demonstrate consistency with the Delta Plan, WR P1 subsection (c)(1)(C) states that water suppliers must report the expected outcomes for measurable improvement in regional self-reliance. Table A.11-2 shows expected outcomes for supplies contributing to regional self-reliance both in amount and as a percentage. The numbers shown in Table A.11-2 represent efforts to improve regional self-reliance for Metropolitan's entire service area and include the total contributions of Metropolitan and its members as well as their customers. Supporting narratives and documentation for the all of the data shown in Table A.11-2 are provided below.

The results shown in Table A.11-2 demonstrate that Metropolitan's service area is measurably improving its regional self-reliance. In the near-term (2025), the expected outcome for normal water year regional self-reliance increases by 747 TAF from the 2010 baseline; this represents an increase of about 23 percent of 2025 normal water year retail demands. In the long-term (2045), normal water year regional self-reliance is expected to increase by more than 1.2 MAF from the 2010 baseline; this represents an increase of 25 percent of 2045 normal water year retail demands.

Table A.11-2
Supplies Contributing to Regional Self-Reliance

2015

2020

2020

15.7%

2025

2025

96.4%

24.8%

2030

2030

25.6%

2035

2035

26.2%

2040

2040

25.9%

2045

Baseline

Baseline

(2010)

NA

71.6%

| (i iii ii                               |           |           |           |           |           |           |           |           |
|-----------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Water Use Efficiency                                                  | 865,000   | 936,000   | 1,056,000 | 1,162,000 | 1,211,000 | 1,263,000 | 1,325,000 | 1,389,000 |
| Water Recycling                                                       | 316,000   | 348,000   | 436,000   | 550,000   | 613,000   | 687,000   | 698,000   | 706,000   |
| Stormwater Capture and Use                                            | 100,000   | 103,000   | 110,000   | 80,000    | 82,000    | 82,000    | 82,000    | 82,000    |
| Advanced Water Technologies                                           | 111,000   | 101,000   | 194,000   | 194,000   | 208,000   | 209,000   | 209,000   | 210,000   |
| Conjunctive Use Projects                                              | 1,416,000 | 1,429,000 | 1,303,000 | 1,255,000 | 1,273,000 | 1,296,000 | 1,311,000 | 1,326,000 |
| Local and Regional Water Supply and Storage Projects                  | 252,000   | 224,000   | 261,000   | 257,000   | 257,000   | 258,000   | 258,000   | 258,000   |
| Other Programs and Projects that Contribute to Regional Self-Reliance | 875,000   | 1,250,000 | 1,200,000 | 1,250,000 | 1,250,000 | 1,250,000 | 1,250,000 | 1,250,000 |
| Water Supplies Contributing to Regional Self-Reliance                 | 3,935,000 | 4,391,000 | 4,560,000 | 4,748,000 | 4,894,000 | 5,045,000 | 5,133,000 | 5,221,000 |
|                                                                       |           |           |           |           |           |           |           |           |
| Service Area Demands without Water Use Efficiency                     | Baseline  | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| (Acre-Feet)                                                           | (2010)    | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| Service Area Demands without Water Use Efficiency Accounted For       | 5,493,000 | 5,499,000 | 5,219,000 | 4,925,000 | 5,032,000 | 5,156,000 | 5,261,000 | 5,374,000 |
|                                                                       |           |           |           |           |           |           |           |           |
| Change in Regional Self Reliance                                      | Baseline  |           |           |           |           |           |           |           |
| (Acre-Feet)                                                           | (2010)    | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
|                                                                       |           |           |           |           |           |           |           |           |
| Water Supplies Contributing to Regional Self-Reliance                 | 3,935,000 | 4,391,000 | 4,560,000 | 4,748,000 | 4,894,000 | 5,045,000 | 5,133,000 | 5,221,000 |

2015

2045

97.29

25.59

#### Water Use Efficiency

The water use efficiency information shown in Table A.11-2 is taken directly from Table A.11-1 above.

#### Water Recycling

The water recycling values shown in Table A.11-2 reflect the total recycled water production in Metropolitan's service area as described in Section 3.5 and Appendix 2 of Metropolitan's UWMP.

#### Stormwater Capture and Use

The stormwater capture and use data shown in Table A.11-2 include supplies from local surface water production as described in Section 1.4 and Appendix 2 of Metropolitan's UWMP.

These values do not include production from regional storage reservoirs; storage in these reservoirs is comprised of previously stored water from sources already reflected in Tables A.11-2 and A.11-3. These regional storage resources are generally used to provide additional regional self-reliance in dry years, which is not reflected in this normal water year analysis. The regional storage reservoirs and their yields are described in Section 3.6, Appendix 2 and Appendix 3 of Metropolitan's UWMP.

The stormwater capture and use values shown in Table A.11-2 also do not include stormwater capture that is used to recharge local groundwater basins. Stormwater capture for groundwater recharge supports production of groundwater in the region, and for the purposes of this analysis that production is already captured in Table A.11-2 under conjunctive use projects.

#### Advanced Water Technologies

The advanced water technologies data shown in Table A.11-2 include total groundwater recovery and seawater desalination production in Metropolitan's service area as described in Section 3.5 and Appendix 2 of Metropolitan's UWMP.

#### Conjunctive Use Projects

The values for conjunctive use projects shown in Table A.11-2 represent total groundwater production in the region as described in Section 1.4 and Appendix 2 of Metropolitan's UWMP.

The conjunctive use projects numbers shown in Table A.11-2 do not include production from regional groundwater conjunctive use programs. As described in the stormwater capture and use discussion above, these regional storage programs rely on previously stored water from sources already reflected in Tables A.11-2 and A.11-3 and are generally used to provide additional regional self-reliance in dry-years. The regional groundwater conjunctive use programs and their yields are described in Section 3.6 and Appendix 3.

#### Local and Regional Water Supply and Storage Programs

The data for local and regional water supply and storage programs shown in Table A.11-2 include supplies from the Los Angeles Aqueduct. This supply is described in Section 1.4 and Appendix 2 of Metropolitan's UWMP.

The local and regional supply numbers shown in Table A.11-2, except for "Other Programs and Projects that Contribute to Regional Self-Reliance" which is discussed below, were obtained from the following sources:

 Baseline (2010) values – Metropolitan's 2005 UWMP, Table 2-6: Metropolitan Regional Water Demand Average Year

- 2015 values Metropolitan's 2010 UWMP, Table 2-8: Metropolitan Regional Water Demands Average Year
- 2020 values Metropolitan's 2015 UWMP, Table 2-3: Metropolitan Regional Water Demands Average Year
- 2025-2045 values Metropolitan's 2020 UWMP, Table 2-3: Metropolitan Regional Water Demands Normal Water Year

#### Other Programs and Projects that Contribute to Regional Self-Reliance

Other programs and projects that contribute to regional self-reliance shown in Table A.11-2 include current programs from the Colorado River Aqueduct. Colorado River supplies include Metropolitan's basic Colorado River apportionment, as well as supplies that result from existing and committed programs, including those from the IID-MWD Conservation Program, the implementation of the Quantification Settlement Agreement (QSA), related agreements, and the exchange agreement with SDCWA. Colorado River Aqueduct supplies and programs are described in Section 3.1 and Appendix 3 of Metropolitan's UWMP.

The values shown in Table A.11-2 for other programs and projects that contribute to regional self-reliance come from the following sources:

- Baseline (2010) values Metropolitan's 2005 UWMP, Table A.3-7: Maximum Expected Colorado River Aqueduct Deliveries Year 2010 (Average Year)
- 2015 values Metropolitan's 2010 UWMP, Table A.3-7: Maximum Expected Colorado River Aqueduct Deliveries Year 2015 (Average Year)
- 2020 values Metropolitan's 2015 UWMP, Table A.3-7: Maximum Expected Colorado River Aqueduct Deliveries Year 2020 (Average Year)
- 2025-2045 values Metropolitan's 2020 UWMP, Table A.3-7: Maximum Expected Colorado River Aqueduct Deliveries Years 2025, 2030, 2035, 2040, 2045 (Normal Water Year)

#### Reliance on Water Supplies from the Delta Watershed

In order for a covered action to demonstrate consistency with the Delta Plan, WR P1 subsection (c)(1)(C) requires that water suppliers report the expected outcomes for measurable reductions in supplies from the Delta watershed either as an amount or as a percentage. This analysis provides both calculations. Based on the methodology described in Guidebook Appendix C, and consistent with the approach of this analysis in not including projects under development, this accounting does not include any supplies from potential future covered actions. Table A.11-3 shows the expected outcomes for reliance on supplies from the Delta watershed for Metropolitan's service area. Supporting narratives and documentation for the all of the data shown in Table A.11-3 are provided below.

The results shown in Table A.11-3 demonstrate that Metropolitan's service area is measurably reducing its Delta reliance. In the near-term (2025), the expected outcome for normal water year reliance on supplies from the Delta watershed decreased by 301 TAF from the 2010 baseline; this represents a decrease of 3 percent of 2025 normal water year retail demands. In the long-term (2045), normal water year reliance on supplies from the Delta watershed decreased by 314 TAF from the 2010 baseline; this represents a decrease of just over 5 percent of 2045 normal water year retail demands.

Table A.11-3
Reliance on Water Supplies from the Delta Watershed

| Water Supplies from the Delta Watershed<br>(Acre-Feet)                                    | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
|-------------------------------------------------------------------------------------------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| CVP/SWP Contract Supplies                                                                 | 1,472,000          | 1,029,000 | 984,000   | 1,133,000 | 1,130,000 | 1,128,000 | 1,126,000 | 1,126,000 |
| Delta/Delta Tributary Diversions                                                          | -                  | -         | -         | -         | -         | -         | -         | -         |
| Transfers and Exchanges of Supplies from the Delta Watershed                              | 20,000             | 44,000    | 91,000    | 58,000    | 52,000    | 52,000    | 52,000    | 52,000    |
| Other Water Supplies from the Delta Watershed                                             | -                  | -         | -         | -         | -         | -         | -         | -         |
| Total Water Supplies from the Delta Watershed                                             | 1,492,000          | 1,073,000 | 1,075,000 | 1,191,000 | 1,182,000 | 1,180,000 | 1,178,000 | 1,178,000 |
|                                                                                           |                    |           |           |           |           |           |           |           |
| Service Area Demands without Water Use Efficiency<br>(Acre-Feet)                          | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| Service Area Demands without Water Use Efficiency Accounted For                           | 5,493,000          | 5,499,000 | 5,219,000 | 4,925,000 | 5,032,000 | 5,156,000 | 5,261,000 | 5,374,000 |
|                                                                                           |                    |           |           |           |           |           | -         |           |
| Change in Supplies from the Delta Watershed<br>(Acre-Feet)                                | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| Water Supplies from the Delta Watershed                                                   | 1,492,000          | 1,073,000 | 1,075,000 | 1,191,000 | 1,182,000 | 1,180,000 | 1,178,000 | 1,178,000 |
| Change in Supplies from the Delta Watershed                                               | NA                 | (419,000) | (417,000) | (301,000) | (310,000) | (312,000) | (314,000) | (314,000) |
| Percent Change in Supplies from the Delta Watershed<br>(As a Percent of Demand w/out WUE) | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| Percent of Supplies from the Delta Watershed                                              | 27.2%              | 19.5%     | 20.6%     | 24.2%     | 23.5%     | 22.9%     | 22.4%     | 21.9%     |
| Change in Percent of Supplies from the Delta Watershed                                    | NΔ                 | -7.6%     | -6.6%     | -3.0%     | -3.7%     | -4.3%     | -4.8%     | -5.2%     |

#### CVP/SWP Contract Supplies

The CVP/SWP contract supplies shown in Table A.11-3 include Metropolitan's SWP Table A and Article 21 supplies. These supplies are described in Section 3.2 and Appendix 3 of Metropolitan's UWMP.

The values shown in Table A.11-3 do not include Desert Water Agency/Coachella Valley Water District SWP contract supplies. These supplies are exchanged with Desert Water Agency and Coachella Valley Water District for an equal amount of Colorado River water, which is reflected in the Colorado River Aqueduct supplies shown in Table A.11-2. In addition, Desert Water Agency and Coachella Valley Water District should include their SWP contract supplies in their own accountings of reduced reliance. Additional information on these exchange agreements can be found in Section 3.2 and Appendix 3 of Metropolitan's UWMP.

These values also do not include supplies from San Luis Carryover storage or Central Valley storage programs because storage in these programs comprises previously stored water from sources already reflected in Table A.11-3. These storage programs are generally used to provide additional regional self-reliance in dry years, which is not reflected in this normal water year analysis. The Central Valley storage projects and their yields are described in Section 3.3, and Appendix 3. San Luis Carryover storage is described in Section 3.2 and Appendix 3.

#### Transfers and Exchanges of Supplies from the Delta Watershed

The transfers and exchanges of supplies from the Delta watershed shown in Table A.11-3 include supplies from the San Bernardino Valley MWD Program, Yuba River Accord Purchase Program, the San Gabriel Valley MWD Program, Irvine Ranch Water District Storage and Exchange Program, and other generic SWP and Central Valley transfers and exchanges. These programs are described in Section 3.2 and Appendix 3 of Metropolitan's UWMP.

Supplies from the Delta Watershed shown in Table A.11-3 are from the following sources:

• Baseline (2010) values – Metropolitan's 2005 UWMP, Table A.3-7: California Aqueduct Program Capabilities Year 2010 (Average Year)

- 2015 values Metropolitan's 2010 UWMP, Table A.3-7: California Aqueduct Program Capabilities Year 2015 (Average Year)
- 2020 values Metropolitan's 2015 UWMP, Table A.3-7: California Aqueduct Program Capabilities Year 2020 (Average Year)
- 2025-2045 values Metropolitan's 2020 UWMP, Table A.3-7: California Aqueduct Program Capabilities Years 2025, 2030, 2035, 2040, 2045 (Normal Water Year)

#### A.11.4 UWMP Implementation

In addition to the analysis and documentation described above, WR P1 subsection (c)(1)(B) requires that all programs and projects included in the UWMP that are locally cost-effective and technically feasible, which reduce reliance on the Delta, are identified, evaluated, and implemented consistent with the implementation schedule. WR P1 (c)(1)(B) states that:

(B) Identified, evaluated, and commenced implementation, consistent with the implementation schedule set forth in the Plan, of all programs and projects included in the Plan that are locally cost effective and technically feasible which reduce reliance on the Delta[.]

In accordance with Water Code Section 10631(f), water suppliers must already include in their UWMP a detailed description of expected future projects and programs that they may implement to increase the amount of water supply available to them in normal and single-dry water years and for a period of drought lasting five consecutive years. The UWMP description must also identify specific projects, include a description of the increase in water supply that is expected to be available from each project, and include an estimate regarding the implementation timeline for each project or program.

Section 3 of Metropolitan's UWMP summarizes the implementation plan and continued progress in developing a diversified water portfolio to meet the region's water needs.

#### Water Use Efficiency

The water use efficiency numbers used in this analysis include the total water use efficiency savings (conservation) for the service area, including savings from active, code-based, price-effect and pre-1990 savings. The specific water use efficiency programs and their implementation are described in Section 3.4 of Metropolitan's UWMP.

#### Water Recycling

The water recycling values used in this analysis reflect the total recycled water production in Metropolitan's service area. Water recycling programs and implementation are discussed in Section 3.5 of Metropolitan's UWMP. In addition, individual project-level details are provided in Appendix 5.

#### Stormwater Capture and Use

The stormwater capture and use data used in this analysis include supplies from local surface water production. Local surface water production and its implementation are discussed in Appendix 2 of Metropolitan's UWMP.

#### Advanced Water Technologies

The advanced water technologies data used in this analysis include total groundwater recovery and seawater desalination production in Metropolitan's service. Groundwater recovery and seawater desalination programs and implementation are described in Section 3.5 of Metropolitan's UWMP. In addition, individual project-level details are provided in Appendix 5.

#### Conjunctive Use Projects

The values for conjunctive use projects used in this analysis represent total groundwater production in the region. Groundwater production and its implementation are discussed in Appendix 2 of Metropolitan's UWMP.

#### Local and Regional Water Supply and Storage Programs

The data for local and regional water supply and storage programs shown this analysis include supplies from the Los Angeles Aqueduct. This program and its implementation are described in Appendix 2 of Metropolitan's UWMP.

#### Other Programs and Projects that Contribute to Regional Self-Reliance

Other programs and projects that contribute to regional self-reliance used in this analysis include current programs from the Colorado River Aqueduct. Colorado River supplies include Metropolitan's basic Colorado River apportionment, as well as supplies that result from existing and committed programs, including those from the IID-MWD Conservation Program, the implementation of the Quantification Settlement Agreement (QSA), related agreements, and the exchange agreement with SDCWA. Colorado River Aqueduct programs and their implementation are described in Section 3.1 and Appendix 3 of Metropolitan's UWMP.

#### CVP/SWP Contract Supplies

The CVP/SWP contract supplies shown in this analysis include Metropolitan's SWP Table A and Article 21 supplies. These supplies and their implementation are described in Section 3.2 and Appendix 3 of Metropolitan's UWMP.

#### <u>Transfers and Exchanges of Supplies from the Delta Watershed</u>

The transfers and exchanges of supplies from the Delta watershed shown in this analysis include supplies from the San Bernardino Valley MWD Program, Yuba River Accord Purchase Program, the San Gabriel Valley MWD Program, Irvine Ranch Water District Storage and Exchange Program, and other generic SWP and Central Valley transfers and exchanges. These programs and their implementation are described in Section 3.2 and Appendix 3 of Metropolitan's UWMP.

#### A.11.5 2015 UWMP Appendix 11

The information contained in this Appendix 11 is also intended to be a new Appendix 11 attached to Metropolitan's 2015 UWMP consistent with WR P1 subsection (c)(1)(C) (Cal. Code Regs. tit. 23, § 5003). Metropolitan provided notice of the availability of the draft 2020 UWMP (including this Appendix 11 which will also be a new Appendix 11 to its 2015 UWMP) and WSCP and the public hearing to consider adoption of both plans and Appendix 11 to the 2015 UWMP in accordance with CWC Sections 10621(b) and 10642, and Government Code Section 6066, and Chapter 17.5 (starting with Section 7290) of Division 7 of Title 1 of the Government Code. The public review drafts of the 2020 UWMP, Appendix 11 to the 2015 UWMP, and the WSCP were posted prominently on Metropolitan's website, mwdh2o.com, starting February 1, 2021, more than 60 days in advance of the public hearing on April 12, 2021. The notice of availability of the documents was sent to Metropolitan's member agencies, as well as cities and counties in Metropolitan's service area. In addition, a public notice advertising the public hearing in English and Spanish was published in 12 Southern California newspapers. The notification in English language newspapers was published on February 1 and 8, 2021. The notification was published on January 28-30, 2021 and February 1, 4-6, and 8, 2021 in Spanish language newspapers, satisfying the requirement for non-English language notification. Copies of: (1) the notification letter sent to the member gaencies, cities and counties in Metropolitan's service grea, and (2) the notice published in the newspapers are included in the 2020 UWMP Section 5. Thus, this Appendix 11 to Metropolitan's 2020 UWMP, which was adopted with Metropolitan's 2020 UWMP, will also be recognized and treated as Appendix 11 to Metropolitan's 2015 UWMP.

Metropolitan held the public hearing for the draft 2020 UWMP, draft Appendix 11 to the 2015 UWMP, and draft WSCP on April 12, 2021, at the Board's Water Planning and Stewardship Committee meeting, held online due to COVID-19 concerns. On May 11, 2021, Metropolitan's Board determined that the 2020 UWMP and the WSCP are consistent with the MWD Act and accurately represent the water resources plan for Metropolitan's service area. In addition, Metropolitan's Board determined that Appendix 11 to both the 2015 UWMP and the 2020 UWMP includes all of the elements described in Delta Plan Policy WR P1, Reduce Reliance on the Delta Through Improved Regional Water Self-Reliance (Cal. Code Regs. tit. 23, § 5003), which need to be included in a water supplier's UWMP to support a certification of consistency for a future covered action. As stated in Resolutions 9279, 9280, and 9281, the Board adopted the 2020 UWMP, Appendix 11 to the 2015 UWMP, and the WSCP and authorized their submittal to the State of California. Copies of Resolutions 9279, 9280, and 9281 are included in the 2020 UWMP Section 5, and Resolution 9281 for the WSCP is attached to the WSCP as Attachment C.

### Appendix 11

# QUANTIFYING REGIONAL SELF-RELIANCE AND REDUCED RELIANCE ON WATER SUPPLIES FROM THE DELTA WATERSHED

# Appendix 11 METROPOLITAN'S REDUCED DELTA RELIANCE REPORTING

#### A.11.1 Background

Under the Sacramento-San Joaquin Delta Reform Act of 2009, state and local public agencies proposing a covered action in the Delta, prior to initiating the implementation of that action, must prepare a written certification of consistency with detailed findings as to whether the covered action is consistent with applicable Delta Plan policies and submit that certification to the Delta Stewardship Council. Anyone may appeal a certification of consistency, and if the Delta Stewardship Council grants the appeal, the covered action may not be implemented until the agency proposing the covered action submits a revised certification of consistency, and either no appeal is filed, or the Delta Stewardship Council denies the subsequent appeal.

An urban water supplier that anticipates participating in or receiving water from a proposed covered action such as a multi-year water transfer, conveyance facility, or new diversion that involves transferring water through, exporting water from, or using water in the Delta should provide information in their 2015 and 2020 Urban Water Management Plans (UWMPs) that can then be used in the covered action process to demonstrate consistency with Delta Plan Policy WR P1, Reduce Reliance on the Delta Through Improved Regional Water Self-Reliance (WR P1).<sup>4</sup>

WR P1 details what is needed for a covered action to demonstrate consistency with reduced reliance on the Delta and improved regional self-reliance. WR P1 subsection (a) states that:

- (a) Water shall not be exported from, transferred through, or used in the Delta if all of the following apply:
  - (1) One or more water suppliers that would receive water as a result of the export, transfer, or use have failed to adequately contribute to reduced reliance on the Delta and improved regional self-reliance consistent with all of the requirements listed in paragraph (1) of subsection (c);
  - (2) That failure has significantly caused the need for the export, transfer, or use; and
  - (3) The export, transfer, or use would have a significant adverse environmental impact in the Delta.

WR P1 subsection (c)(1) further defines what adequately contributing to reduced reliance on the Delta means in terms of (a)(1) above.

- (c)(1) Water suppliers that have done all the following are contributing to reduced reliance on the Delta and improved regional self-reliance and are therefore consistent with this policy:
  - (A) Completed a current Urban or Agricultural Water Management Plan (Plan) which has been reviewed by the California Department of Water Resources for compliance with the applicable requirements of Water Code Division 6, Parts 2.55, 2.6, and 2.8;

<sup>&</sup>lt;sup>1</sup> Water Code, § 85057.5; Cal. Code Regs. tit. 23, § 5001.

<sup>&</sup>lt;sup>2</sup> Water Code, § 85225; Delta Plan, App. D.

<sup>&</sup>lt;sup>3</sup> Water Code, §§ 85225.10-85225.25; Delta Plan, App. D.

<sup>&</sup>lt;sup>4</sup> Cal. Code Regs., tit. 23, § 5003.

- (B) Identified, evaluated, and commenced implementation, consistent with the implementation schedule set forth in the Plan, of all programs and projects included in the Plan that are locally cost effective and technically feasible which reduce reliance on the Delta; and
- (C) Included in the Plan, commencing in 2015, the expected outcome for measurable reduction in Delta reliance and improvement in regional self-reliance. The expected outcome for measurable reduction in Delta reliance and improvement in regional self-reliance shall be reported in the Plan as the reduction in the amount of water used, or in the percentage of water used, from the Delta watershed. For the purposes of reporting, water efficiency is considered a new source of water supply, consistent with Water Code Section 1011(a).

The analysis and documentation provided below include all of the elements described in WR P1(c)(1) that need to be included in a water supplier's UWMP to support a certification of consistency for a future covered action.

### A.11.2 Summary of Expected Outcomes for Reduced Reliance on the Delta

As stated in WR P1(c)(1)(C), the policy requires that, commencing in 2015, UWMPs include expected outcomes for measurable reduction in Delta reliance and improved regional self-reliance. WR P1 further states that those outcomes shall be reported in the UWMP as the reduction in the amount of water used, or in the percentage of water used, from the Delta.

The expected outcomes for Metropolitan's Delta reliance and regional self-reliance were developed using the approach and guidance described in Appendix C of DWR's Urban Water Management Plan Guidebook 2020 (Guidebook Appendix C) issued in March 2021.

The data used in this analysis represent the total regional efforts of Metropolitan and its member agencies and their customers (many of them, retail agencies) and were developed in conjunction with Metropolitan's member agencies as part of the UWMP coordination process as described in Section 5 of Metropolitan's UWMP. In accordance with UMWP requirements, Metropolitan's member agencies and their customers (many of them, retail agencies) also report demands and supplies for their service areas in their respective UWMPs. The data reported by those agencies are not additive to the regional totals shown in Metropolitan's UWMP; rather, their reporting represents subtotals of the regional total and should be considered as such for the purposes of determining reduced reliance on the Delta.

While the demands that Metropolitan's member agencies and their customers report in their UWMPs are a good reflection of the demands in their respective service areas, they do not adequately represent each water supplier's contributions to reduced reliance on the Delta. In order to calculate and report their reliance on water supplies from the Delta watershed, water suppliers that receive water from the Delta through other regional or wholesale water suppliers would need to determine the amount of Delta water that they receive from the regional or wholesale supplier. Two specific pieces of information are needed to accomplish this: first is the quantity of demands on the regional or wholesale water supplier that accurately reflect a supplier's contributions to reduced reliance on the Delta, and second is the quantity of a supplier's demands on the regional or wholesale water supplier that are met by supplies from the Delta watershed.

For water suppliers that make investments in regional projects or programs it may be infeasible to quantify their demands on the regional or wholesale water supplier in a way that accurately reflects their individual contributions to reduced reliance on the Delta. Due to the extensive, long-

standing and successful implementation of regional demand management and local resource incentive programs in Metropolitan's service area, this infeasibility holds true for Metropolitan's members as well their customers. For Metropolitan's service area, reduced reliance on supplies from the Delta watershed can only be accurately accounted at the regional level, as is demonstrated in this analysis.

The following provides a summary of the near-term (2025) and long-term (2045) expected outcomes for Metropolitan's Delta reliance and regional self-reliance. The results show that as a region, Metropolitan and its members as well as their customers are measurably reducing reliance on the Delta and improving regional self-reliance, both as an amount of water used and as a percentage of water used.

### Expected Outcomes for Regional Self-Reliance

- Near-term (2025) Normal water year regional self-reliance is expected to increase by 813 TAF from the 2010 baseline; this represents an increase of almost 25 percent of 2025 normal water year retail demands (Table A.11-2).
- Long-term (2045) Normal water year regional self-reliance is expected to increase by more than 1.28 MAF from the 2010 baseline, this represents an increase of more than 25 percent of 2045 normal water year retail demands (Table A.11-2).

### Expected Outcomes for Reduced Reliance on Supplies from the Delta Watershed

- Near-term (2025) Normal water year reliance on supplies from the Delta watershed decreased by 301 TAF from the 2010 baseline, this represents a decrease of 3 percent of 2025 normal water year retail demands (Table A.11-3).
- Long-term (2045) Normal water year reliance on supplies from the Delta watershed decreased by 314 TAF from the 2010 baseline, this represents a decrease of just over 5 percent of 2045 normal water year retail demands (Table A.11-3).

### A11.3 Demonstration of Reduced Reliance on the Delta

The methodology used to determine Metropolitan's reduced Delta reliance and improved regional self-reliance is consistent with the approach detailed in DWR's UWMP Guidebook Appendix C, including the use of narrative justifications for the accounting of supplies and the documentation of specific data sources. Some of the key assumptions underlying Metropolitan's demonstration of reduced reliance include:

- All data were obtained from the current 2020 UWMP or previously adopted UWMPs and represent average or normal water year conditions.
- All analyses were conducted at the service area level, and all data reflect the total contributions of Metropolitan and its members as well as their customers.
- No projects or programs that are described in the UWMPs as "Projects Under Development" were included in the accounting of supplies.

### Baseline and Expected Outcomes

In order to calculate the expected outcomes for measurable reduction in Delta reliance and improved regional self-reliance, a baseline is needed to compare against. This analysis uses a normal water year representation of 2010 as the baseline, which is consistent with the approach described in the Guidebook Appendix C. Data for the 2010 baseline were taken from Metropolitan's 2005 UWMP as the UWMPs generally do not provide normal water year data for

the year that they are adopted (i.e., 2005 UWMP forecasts begin in 2010, 2010 UWMP forecasts begin in 2015, and so on).

Consistent with the 2010 baseline data approach, the expected outcomes for reduced Delta reliance and improved regional self-reliance for 2015 and 2020 were taken from Metropolitan's 2010 and 2015 UWMPs respectively. Expected outcomes for 2025-2045 are from the current 2020 UWMP. Documentation of the specific data sources and assumptions are included in the discussions below.

### Service Area Demands without Water Use Efficiency

In alignment with the Guidebook Appendix C, this analysis uses normal water year demands, rather than normal water year supplies to calculate expected outcomes in terms of the percentage of water used. Using normal water year demands serves as a proxy for the amount of supplies that would be used in a normal water year, which helps alleviate issues associated with how supply capability is presented to fulfill requirements of the Act versus how supplies might be accounted for to demonstrate consistency with WR P1.

Because WR P1 considers water use efficiency savings a source of water supply, water suppliers such as Metropolitan that explicitly calculate and report water use efficiency savings in their UWMP will need to make an adjustment to properly reflect normal water year demands in the calculation of reduced reliance. As explained in the Guidebook Appendix C, water use efficiency savings must be added back to the normal year demands to represent demands without water use efficiency savings accounted for; otherwise the effect of water use efficiency savings on regional self-reliance would be overestimated. Table A.11-1 shows the results of this adjustment for Metropolitan. Supporting narratives and documentation for all of the data shown in Table A.11-1 are provided below.

Table A.11-1
Demands without Water Use Efficiency Accounted For

| Total Service Area Water Demands<br>(Acre-Feet)                 | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
|-----------------------------------------------------------------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Service Area Demands with Water Use Efficiency Accounted For    | 4,628,000          | 4,563,000 | 4,163,000 | 3,763,000 | 3,821,000 | 3,893,000 | 3,936,000 | 3,985,000 |
| Reported Water Use Efficiency                                   | 865,000            | 936,000   | 1,056,000 | 1,162,000 | 1,211,000 | 1,263,000 | 1,325,000 | 1,389,000 |
| Service Area Demands without Water Use Efficiency Accounted For | 5,493,000          | 5,499,000 | 5,219,000 | 4,925,000 | 5,032,000 | 5,156,000 | 5,261,000 | 5,374,000 |

### Service Area Demands without Water Use Efficiency

The service area demands shown in Table A.11-1 represent the total retail water demands for Metropolitan's service area and include municipal and industrial demands, agricultural demands, seawater barrier demands, and storage replenishment demands. These demand types and the modeling methodologies used to calculate them are described in Section 2.2 and Appendix 1 of Metropolitan's UWMP.

#### Water Use Efficiency

The water use efficiency numbers shown in Table A.11-1 represent the total water use efficiency savings (conservation) for Metropolitan's region, including savings from active, code-based, price-effect and pre-1990 sources. These sources of water use efficiency and the methodologies used to calculate them are described in Section 2.2, Section 3.4, Section 3.7 and Appendix 1 of Metropolitan's UWMP.

The demand and water use efficiency data shown in Table A.11-1 were collected from the following sources:

- Baseline (2010) values Metropolitan's 2005 UWMP, Table 2-6: Metropolitan Regional Water Demand Average Year
- 2015 values Metropolitan's 2010 UWMP, Table 2-8: Metropolitan Regional Water Demands Average Year
- 2020 values Metropolitan's 2015 UWMP, Table 2-3: Metropolitan Regional Water Demands Average Year
- 2025-2045 values Metropolitan's 2020 UWMP, Table 2-3: Metropolitan Regional Water Demands Normal Water Year

### Supplies Contributing to Regional Self-Reliance

Water Supplies Contributing to Regional Self-Reliance

For a covered action to demonstrate consistency with the Delta Plan, WR P1 subsection (c)(1)(C) states that water suppliers must report the expected outcomes for measurable improvement in regional self-reliance. Table A.11-2 shows expected outcomes for supplies contributing to regional self-reliance both in amount and as a percentage. The numbers shown in Table A.11-2 represent efforts to improve regional self-reliance for Metropolitan's entire service area and include the total contributions of Metropolitan and its members as well as their customers. Supporting narratives and documentation for the all of the data shown in Table A.11-2 are provided below.

The results shown in Table A.11-2 demonstrate that Metropolitan's service area is measurably improving its regional self-reliance. In the near-term (2025), the expected outcome for normal water year regional self-reliance increases by 747 TAF from the 2010 baseline; this represents an increase of about 23 percent of 2025 normal water year retail demands. In the long-term (2045), normal water year regional self-reliance is expected to increase by more than 1.2 MAF from the 2010 baseline; this represents an increase of 25 percent of 2045 normal water year retail demands.

Table A.11-2
Supplies Contributing to Regional Self-Reliance

2015

2020

Baseline

| (Acre-Feet)                                                                  | (2010)             |           |           |           |           |           |           |           |
|------------------------------------------------------------------------------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Water Use Efficiency                                                         | 865,000            | 936,000   | 1,056,000 | 1,162,000 | 1,211,000 | 1,263,000 | 1,325,000 | 1,389,000 |
| Water Recycling                                                              | 316,000            | 348,000   | 436,000   | 550,000   | 613,000   | 687,000   | 698,000   | 706,000   |
| Stormwater Capture and Use                                                   | 100,000            | 103,000   | 110,000   | 80,000    | 82,000    | 82,000    | 82,000    | 82,000    |
| Advanced Water Technologies                                                  | 111,000            | 101,000   | 194,000   | 194,000   | 208,000   | 209,000   | 209,000   | 210,000   |
| Conjunctive Use Projects                                                     | 1,416,000          | 1,429,000 | 1,303,000 | 1,255,000 | 1,273,000 | 1,296,000 | 1,311,000 | 1,326,000 |
| Local and Regional Water Supply and Storage Projects                         | 252,000            | 224,000   | 261,000   | 257,000   | 257,000   | 258,000   | 258,000   | 258,000   |
| Other Programs and Projects that Contribute to Regional Self-Reliance        | 875,000            | 1,250,000 | 1,200,000 | 1,250,000 | 1,250,000 | 1,250,000 | 1,250,000 | 1,250,000 |
| Water Supplies Contributing to Regional Self-Reliance                        | 3,935,000          | 4,391,000 | 4,560,000 | 4,748,000 | 4,894,000 | 5,045,000 | 5,133,000 | 5,221,000 |
|                                                                              |                    |           |           |           |           |           |           |           |
| Service Area Demands without Water Use Efficiency<br>(Acre-Feet)             | Baseline           | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| Service Area Demands without Water Use Efficiency Accounted For              | (2010)             | F 400 000 | F 310 000 | 4.025.000 | E 022 000 | E 1EC 000 | F 2C1 000 | F 274 000 |
| service Area Demands without water ose Efficiency Accounted For              | 5,493,000          | 5,499,000 | 5,219,000 | 4,925,000 | 5,032,000 | 5,156,000 | 5,261,000 | 5,374,000 |
| Change in Regional Self Reliance<br>(Acre-Feet)                              | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| Water Supplies Contributing to Regional Self-Reliance                        | 3,935,000          | 4,391,000 | 4,560,000 | 4,748,000 | 4,894,000 | 5,045,000 | 5,133,000 | 5,221,000 |
| Change in Supplies Contributing to Regional Self-Reliance                    | NA                 | 456,000   | 625,000   | 813,000   | 959,000   | 1,110,000 | 1,198,000 | 1,286,000 |
| Percent Change in Regional Self Reliance<br>(As Percent of Demand w/out WUE) | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| Percent of Supplies Contributing to Regional Self-Reliance                   | 71.6%              | 79.9%     | 87.4%     | 96.4%     | 97.3%     | 97.8%     | 97.6%     | 97.2%     |
| Change in Percent of Supplies Contributing to Regional Self-Reliance         | NA                 | 8.2%      | 15.7%     | 24.8%     | 25.6%     | 26.2%     | 25.9%     | 25.5%     |

### Water Use Efficiency

The water use efficiency information shown in Table A.11-2 is taken directly from Table A.11-1 above.

### Water Recycling

The water recycling values shown in Table A.11-2 reflect the total recycled water production in Metropolitan's service area as described in Section 3.5 and Appendix 2 of Metropolitan's UWMP.

### Stormwater Capture and Use

The stormwater capture and use data shown in Table A.11-2 include supplies from local surface water production as described in Section 1.4 and Appendix 2 of Metropolitan's UWMP.

These values do not include production from regional storage reservoirs; storage in these reservoirs is comprised of previously stored water from sources already reflected in Tables A.11-2 and A.11-3. These regional storage resources are generally used to provide additional regional self-reliance in dry years, which is not reflected in this normal water year analysis. The regional storage reservoirs and their yields are described in Section 3.6, Appendix 2 and Appendix 3 of Metropolitan's UWMP.

The stormwater capture and use values shown in Table A.11-2 also do not include stormwater capture that is used to recharge local groundwater basins. Stormwater capture for groundwater recharge supports production of groundwater in the region, and for the purposes of this analysis that production is already captured in Table A.11-2 under conjunctive use projects.

### Advanced Water Technologies

The advanced water technologies data shown in Table A.11-2 include total groundwater recovery and seawater desalination production in Metropolitan's service area as described in Section 3.5 and Appendix 2 of Metropolitan's UWMP.

### Conjunctive Use Projects

The values for conjunctive use projects shown in Table A.11-2 represent total groundwater production in the region as described in Section 1.4 and Appendix 2 of Metropolitan's UWMP.

The conjunctive use projects numbers shown in Table A.11-2 do not include production from regional groundwater conjunctive use programs. As described in the stormwater capture and use discussion above, these regional storage programs rely on previously stored water from sources already reflected in Tables A.11-2 and A.11-3 and are generally used to provide additional regional self-reliance in dry-years. The regional groundwater conjunctive use programs and their yields are described in Section 3.6 and Appendix 3.

### Local and Regional Water Supply and Storage Programs

The data for local and regional water supply and storage programs shown in Table A.11-2 include supplies from the Los Angeles Aqueduct. This supply is described in Section 1.4 and Appendix 2 of Metropolitan's UWMP.

The local and regional supply numbers shown in Table A.11-2, except for "Other Programs and Projects that Contribute to Regional Self-Reliance" which is discussed below, were obtained from the following sources:

 Baseline (2010) values – Metropolitan's 2005 UWMP, Table 2-6: Metropolitan Regional Water Demand Average Year

- 2015 values Metropolitan's 2010 UWMP, Table 2-8: Metropolitan Regional Water Demands Average Year
- 2020 values Metropolitan's 2015 UWMP, Table 2-3: Metropolitan Regional Water Demands Average Year
- 2025-2045 values Metropolitan's 2020 UWMP, Table 2-3: Metropolitan Regional Water Demands Normal Water Year

### Other Programs and Projects that Contribute to Regional Self-Reliance

Other programs and projects that contribute to regional self-reliance shown in Table A.11-2 include current programs from the Colorado River Aqueduct. Colorado River supplies include Metropolitan's basic Colorado River apportionment, as well as supplies that result from existing and committed programs, including those from the IID-MWD Conservation Program, the implementation of the Quantification Settlement Agreement (QSA), related agreements, and the exchange agreement with SDCWA. Colorado River Aqueduct supplies and programs are described in Section 3.1 and Appendix 3 of Metropolitan's UWMP.

The values shown in Table A.11-2 for other programs and projects that contribute to regional self-reliance come from the following sources:

- Baseline (2010) values Metropolitan's 2005 UWMP, Table A.3-7: Maximum Expected Colorado River Aqueduct Deliveries Year 2010 (Average Year)
- 2015 values Metropolitan's 2010 UWMP, Table A.3-7: Maximum Expected Colorado River Aqueduct Deliveries Year 2015 (Average Year)
- 2020 values Metropolitan's 2015 UWMP, Table A.3-7: Maximum Expected Colorado River Aqueduct Deliveries Year 2020 (Average Year)
- 2025-2045 values Metropolitan's 2020 UWMP, Table A.3-7: Maximum Expected Colorado River Aqueduct Deliveries Years 2025, 2030, 2035, 2040, 2045 (Normal Water Year)

### Reliance on Water Supplies from the Delta Watershed

In order for a covered action to demonstrate consistency with the Delta Plan, WR P1 subsection (c)(1)(C) requires that water suppliers report the expected outcomes for measurable reductions in supplies from the Delta watershed either as an amount or as a percentage. This analysis provides both calculations. Based on the methodology described in Guidebook Appendix C, and consistent with the approach of this analysis in not including projects under development, this accounting does not include any supplies from potential future covered actions. Table A.11-3 shows the expected outcomes for reliance on supplies from the Delta watershed for Metropolitan's service area. Supporting narratives and documentation for the all of the data shown in Table A.11-3 are provided below.

The results shown in Table A.11-3 demonstrate that Metropolitan's service area is measurably reducing its Delta reliance. In the near-term (2025), the expected outcome for normal water year reliance on supplies from the Delta watershed decreased by 301 TAF from the 2010 baseline; this represents a decrease of 3 percent of 2025 normal water year retail demands. In the long-term (2045), normal water year reliance on supplies from the Delta watershed decreased by 314 TAF from the 2010 baseline; this represents a decrease of just over 5 percent of 2045 normal water year retail demands.

Table A.11-3
Reliance on Water Supplies from the Delta Watershed

| Water Supplies from the Delta Watershed<br>(Acre-Feet)                                    | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
|-------------------------------------------------------------------------------------------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| CVP/SWP Contract Supplies                                                                 | 1,472,000          | 1,029,000 | 984,000   | 1,133,000 | 1,130,000 | 1,128,000 | 1,126,000 | 1,126,000 |
| Delta/Delta Tributary Diversions                                                          | -                  | -         | -         | -         | -         | -         | -         | -         |
| Transfers and Exchanges of Supplies from the Delta Watershed                              | 20,000             | 44,000    | 91,000    | 58,000    | 52,000    | 52,000    | 52,000    | 52,000    |
| Other Water Supplies from the Delta Watershed                                             | -                  | -         | -         | -         | -         | -         | -         | -         |
| Total Water Supplies from the Delta Watershed                                             | 1,492,000          | 1,073,000 | 1,075,000 | 1,191,000 | 1,182,000 | 1,180,000 | 1,178,000 | 1,178,000 |
|                                                                                           |                    |           |           |           |           |           |           |           |
| Service Area Demands without Water Use Efficiency<br>(Acre-Feet)                          | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| Service Area Demands without Water Use Efficiency Accounted For                           | 5,493,000          | 5,499,000 | 5,219,000 | 4,925,000 | 5,032,000 | 5,156,000 | 5,261,000 | 5,374,000 |
|                                                                                           |                    | -         |           | -         |           |           | -         |           |
| Change in Supplies from the Delta Watershed<br>(Acre-Feet)                                | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| Water Supplies from the Delta Watershed                                                   | 1,492,000          | 1,073,000 | 1,075,000 | 1,191,000 | 1,182,000 | 1,180,000 | 1,178,000 | 1,178,000 |
| Change in Supplies from the Delta Watershed                                               | NA                 | (419,000) | (417,000) | (301,000) | (310,000) | (312,000) | (314,000) | (314,000) |
| Percent Change in Supplies from the Delta Watershed<br>(As a Percent of Demand w/out WUE) | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      |
| Percent of Supplies from the Delta Watershed                                              | 27.2%              | 19.5%     | 20.6%     | 24.2%     | 23.5%     | 22.9%     | 22.4%     | 21.9%     |
| Change in Percent of Supplies from the Delta Watershed                                    | NA                 | -7.6%     | -6.6%     | -3.0%     | -3.7%     | -4.3%     | -4.8%     | -5.2%     |

### **CVP/SWP Contract Supplies**

The CVP/SWP contract supplies shown in Table A.11-3 include Metropolitan's SWP Table A and Article 21 supplies. These supplies are described in Section 3.2 and Appendix 3 of Metropolitan's UWMP.

The values shown in Table A.11-3 do not include Desert Water Agency/Coachella Valley Water District SWP contract supplies. These supplies are exchanged with Desert Water Agency and Coachella Valley Water District for an equal amount of Colorado River water, which is reflected in the Colorado River Aqueduct supplies shown in Table A.11-2. In addition, Desert Water Agency and Coachella Valley Water District should include their SWP contract supplies in their own accountings of reduced reliance. Additional information on these exchange agreements can be found in Section 3.2 and Appendix 3 of Metropolitan's UWMP.

These values also do not include supplies from San Luis Carryover storage or Central Valley storage programs because storage in these programs comprises previously stored water from sources already reflected in Table A.11-3. These storage programs are generally used to provide additional regional self-reliance in dry years, which is not reflected in this normal water year analysis. The Central Valley storage projects and their yields are described in Section 3.3, and Appendix 3. San Luis Carryover storage is described in Section 3.2 and Appendix 3.

### Transfers and Exchanges of Supplies from the Delta Watershed

The transfers and exchanges of supplies from the Delta watershed shown in Table A.11-3 include supplies from the San Bernardino Valley MWD Program, Yuba River Accord Purchase Program, the San Gabriel Valley MWD Program, Irvine Ranch Water District Storage and Exchange Program, and other generic SWP and Central Valley transfers and exchanges. These programs are described in Section 3.2 and Appendix 3 of Metropolitan's UWMP.

Supplies from the Delta Watershed shown in Table A.11-3 are from the following sources:

• Baseline (2010) values – Metropolitan's 2005 UWMP, Table A.3-7: California Aqueduct Program Capabilities Year 2010 (Average Year)

- 2015 values Metropolitan's 2010 UWMP, Table A.3-7: California Aqueduct Program Capabilities Year 2015 (Average Year)
- 2020 values Metropolitan's 2015 UWMP, Table A.3-7: California Aqueduct Program Capabilities Year 2020 (Average Year)
- 2025-2045 values Metropolitan's 2020 UWMP, Table A.3-7: California Aqueduct Program Capabilities Years 2025, 2030, 2035, 2040, 2045 (Normal Water Year)

### A.11.4 UWMP Implementation

In addition to the analysis and documentation described above, WR P1 subsection (c)(1)(B) requires that all programs and projects included in the UWMP that are locally cost-effective and technically feasible, which reduce reliance on the Delta, are identified, evaluated, and implemented consistent with the implementation schedule. WR P1 (c)(1)(B) states that:

(B) Identified, evaluated, and commenced implementation, consistent with the implementation schedule set forth in the Plan, of all programs and projects included in the Plan that are locally cost effective and technically feasible which reduce reliance on the Delta[.]

In accordance with Water Code Section 10631(f), water suppliers must already include in their UWMP a detailed description of expected future projects and programs that they may implement to increase the amount of water supply available to them in normal and single-dry water years and for a period of drought lasting five consecutive years. The UWMP description must also identify specific projects, include a description of the increase in water supply that is expected to be available from each project, and include an estimate regarding the implementation timeline for each project or program.

Section 3 of Metropolitan's UWMP summarizes the implementation plan and continued progress in developing a diversified water portfolio to meet the region's water needs.

### Water Use Efficiency

The water use efficiency numbers used in this analysis include the total water use efficiency savings (conservation) for the service area, including savings from active, code-based, price-effect and pre-1990 savings. The specific water use efficiency programs and their implementation are described in Section 3.4 of Metropolitan's UWMP.

### Water Recycling

The water recycling values used in this analysis reflect the total recycled water production in Metropolitan's service area. Water recycling programs and implementation are discussed in Section 3.5 of Metropolitan's UWMP. In addition, individual project-level details are provided in Appendix 5.

### Stormwater Capture and Use

The stormwater capture and use data used in this analysis include supplies from local surface water production. Local surface water production and its implementation are discussed in Appendix 2 of Metropolitan's UWMP.

#### <u>Advanced Water Technologies</u>

The advanced water technologies data used in this analysis include total groundwater recovery and seawater desalination production in Metropolitan's service. Groundwater recovery and seawater desalination programs and implementation are described in Section 3.5 of Metropolitan's UWMP. In addition, individual project-level details are provided in Appendix 5.

### Conjunctive Use Projects

The values for conjunctive use projects used in this analysis represent total groundwater production in the region. Groundwater production and its implementation are discussed in Appendix 2 of Metropolitan's UWMP.

### Local and Regional Water Supply and Storage Programs

The data for local and regional water supply and storage programs shown this analysis include supplies from the Los Angeles Aqueduct. This program and its implementation are described in Appendix 2 of Metropolitan's UWMP.

### Other Programs and Projects that Contribute to Regional Self-Reliance

Other programs and projects that contribute to regional self-reliance used in this analysis include current programs from the Colorado River Aqueduct. Colorado River supplies include Metropolitan's basic Colorado River apportionment, as well as supplies that result from existing and committed programs, including those from the IID-MWD Conservation Program, the implementation of the Quantification Settlement Agreement (QSA), related agreements, and the exchange agreement with SDCWA. Colorado River Aqueduct programs and their implementation are described in Section 3.1 and Appendix 3 of Metropolitan's UWMP.

### CVP/SWP Contract Supplies

The CVP/SWP contract supplies shown in this analysis include Metropolitan's SWP Table A and Article 21 supplies. These supplies and their implementation are described in Section 3.2 and Appendix 3 of Metropolitan's UWMP.

### <u>Transfers and Exchanges of Supplies from the Delta Watershed</u>

The transfers and exchanges of supplies from the Delta watershed shown in this analysis include supplies from the San Bernardino Valley MWD Program, Yuba River Accord Purchase Program, the San Gabriel Valley MWD Program, Irvine Ranch Water District Storage and Exchange Program, and other generic SWP and Central Valley transfers and exchanges. These programs and their implementation are described in Section 3.2 and Appendix 3 of Metropolitan's UWMP.

### A.11.5 2015 UWMP Appendix 11

The information contained in this Appendix 11 is also intended to be a new Appendix 11 attached to Metropolitan's 2015 UWMP consistent with WR P1 subsection (c)(1)(C) (Cal. Code Regs. tit. 23, § 5003). Metropolitan provided notice of the availability of the draft 2020 UWMP (including this Appendix 11 which will also be a new Appendix 11 to its 2015 UWMP) and WSCP and the public hearing to consider adoption of both plans and Appendix 11 to the 2015 UWMP in accordance with CWC Sections 10621(b) and 10642, and Government Code Section 6066, and Chapter 17.5 (starting with Section 7290) of Division 7 of Title 1 of the Government Code. The public review drafts of the 2020 UWMP, Appendix 11 to the 2015 UWMP, and the WSCP were posted prominently on Metropolitan's website, mwdh2o.com, starting February 1, 2021, more than 60 days in advance of the public hearing on April 12, 2021. The notice of availability of the documents was sent to Metropolitan's member agencies, as well as cities and counties in Metropolitan's service area. In addition, a public notice advertising the public hearing in English and Spanish was published in 12 Southern California newspapers. The notification in English language newspapers was published on February 1 and 8, 2021. The notification was published on January 28-30, 2021 and February 1, 4-6, and 8, 2021 in Spanish language newspapers, satisfying the requirement for non-English language notification. Copies of: (1) the notification letter sent to the member gaencies, cities and counties in Metropolitan's service grea, and (2) the notice published in the newspapers are included in the 2020 UWMP Section 5. Thus, this Appendix 11 to Metropolitan's 2020 UWMP, which was adopted with Metropolitan's 2020 UWMP, will also be recognized and treated as Appendix 11 to Metropolitan's 2015 UWMP.

Metropolitan held the public hearing for the draft 2020 UWMP, draft Appendix 11 to the 2015 UWMP, and draft WSCP on April 12, 2021, at the Board's Water Planning and Stewardship Committee meeting, held online due to COVID-19 concerns. On May 11, 2021, Metropolitan's Board determined that the 2020 UWMP and the WSCP are consistent with the MWD Act and accurately represent the water resources plan for Metropolitan's service area. In addition, Metropolitan's Board determined that Appendix 11 to both the 2015 UWMP and the 2020 UWMP includes all of the elements described in Delta Plan Policy WR P1, Reduce Reliance on the Delta Through Improved Regional Water Self-Reliance (Cal. Code Regs. tit. 23, § 5003), which need to be included in a water supplier's UWMP to support a certification of consistency for a future covered action. As stated in Resolutions 9279, 9280, and 9281, the Board adopted the 2020 UWMP, Appendix 11 to the 2015 UWMP, and the WSCP and authorized their submittal to the State of California. Copies of Resolutions 9279, 9280, and 9281 are included in the 2020 UWMP Section 5, and Resolution 9281 for the WSCP is attached to the WSCP as Attachment C.

This page intentionally left blank.

# APPENDIX B ATTACHMENT 2

 Appendix G "Inland Empire Utilities Agency Reduced Delta Reliance Reporting", Inland Empire Utilities Agency's 2020 Urban Water Management Plan







### ADDENDUM TO THE 2015 URBAN WATER MANAGEMENT PLAN

**Addendum prepared by Kennedy Jenks Consultants** 

June 2021

### 2020 UWMP Appendix G & 2015 UWMP Appendix P

Reduced Delta Reliance Reporting



# Inland Empire Utilities Agency Reduced Delta Reliance Reporting

### G.1 Background

IEUA is an urban water supplier and a member agency of MWD. MWD provides IEUA with imported water supplies, which IEUA in turn distributes on a wholesale basis to its retail water purveyors. MWD is a contractor on the State Water Project (SWP) and, due to water quality considerations, all imported water supplies IEUA receives from MWD originate from the SWP system. The SWP system runs from Lake Oroville in Northern California to Southern California, crossing the Sacramento-San Joaquin Delta (Delta) along the way. MWD and its member agencies have made investments into water supply and demand management to regionally reduce impacts on the Delta. These investments bring regional reliability and reduced Delta reliance that make it infeasible for individual MWD member agencies to determine their individual Delta reliance.

As a recipient of imported water from the SWP delivered via MWD, IEUA may indirectly receive water through a proposed covered action, such as a multi-year water transfer, conveyance facility, or new diversion that involves transferring water through, exporting water from, or using water in the Delta. Through this appendix, IEUA is providing information in its 2015 and 2020 UWMPs that may be used in the covered action process, to demonstrate consistency with Delta Plan Policy WR P1, *Reduce Reliance on the Delta Through Improved Regional Water Self-Reliance* (WR P1) [California Code of Regulations (CCR), Title 23, § 5003].

The Delta Plan is a comprehensive, long-term resource management plan for the Sacramento-San Joaquin Delta (Delta) that was developed as part of the Delta Reform Act of 2009 (Water code section 85000 et seq) and includes both regulatory policies and recommendations, aimed at promoting a healthy Delta ecosystem. Delta Plan Policy WR P1 is one of 14 regulatory policies in the Delta Plan. WR P1 identifies UWMPs as the tool to demonstrate consistency with state policy to reduce reliance on the Delta for any Supplier that is participating in or carrying out a proposed covered action or receiving Delta water from a proposed covered action.

Within the supplier's UWMP, information should be provided that can be used to demonstrate consistency with this policy. Section (c)(1) of WR P1 states that suppliers that have (A) completed an urban water management plan, (B) implemented the efficiency measures in that plan, and (C) shown a measurable reduction in Delta reliance and improvement in regional self-reliance in the plan, are contributing to reduced reliance on the Delta and are therefore consistent with WR P1 [CCR, Title 23, § 5003(c)(1)].

The analysis and documentation provided below include all elements described in WR P1(c)(1) and are included in IEUA's 2015 and 2020 UWMP to support a certification of consistency in the case of a future covered action.

### **G.2** Demonstration of Reduced Reliance

The methodology used to determine IEUA's reduced Delta reliance and improved regional self-reliance is consistent with the approach detailed in DWR's UWMP Guidebook Appendix C, including the use of narrative justifications for the accounting of supplies and the documentation of specific data sources. Some of the key assumptions underlying IEUA's demonstration of reduced reliance includes:

- All data were obtained from the current 2020 UWMP or previously adopted UWMPs and represent average or normal water year conditions.
- All analyses were conducted at the IEUA service area level. Demands on IEUA are the
  total demands from all its retail agencies. Supplies are the total supplies IEUA manages,
  which are imported water from MWD and recycled water from its regional water recycling
  plants.
- No projects or programs that are described in the UWMPs as "Projects Under Development" were included in the accounting of supplies.

## G.3 Summary of Expected Outcomes for Reduced Reliance on the Delta

As stated in WR P1(c)(1), the policy requires that, commencing in 2015, UWMPs include expected outcomes for measurable reduction in Delta reliance and improved regional self-reliance. WR P1 further states that those outcomes shall be reported in the UWMP as the reduction in the amount of water used, or in the percentage of water used, from the Delta.

It is important to note that MWD has prepared a detailed analysis that demonstrates the consistency with the Delta Plan Policy in its 2020 UWMP on a region-wide scale that includes its Member Agencies (MWD 2020 UWMP, Appendix 11). From its 2010 baseline, both long-term Regional Self-Reliance and Reduced Reliance on Supplies from the Delta are expected to increase over time. IEUA has adopted MWD's calculation of Reduced Reliance on Supplies from the Delta due to the infeasibility of separating out the delta supplies that IEUA receives from MWD (see Section G.6 and G.7 for details).

IEUA will report its own expected outcomes for Regional Self-Reliance in the following sections (G.4 and G.5). These expected outcomes use the approach and guidance described in Appendix C of DWR's Urban Water Management Plan Guidebook 2020 (Guidebook Appendix C), finalized on March 29, 2021.

The following provides a summary of the near-term (2025) and long-term (2045) expected outcomes for IEUA's regional self-reliance and MWD's regional reduction in reliance on Delta water supplies. The results show that IEUA is measurably improving regional self-reliance and MWD and its member agencies are reducing reliance on Delta supplies, both as an amount of water used and as a percentage of water used.

- Near-term (2025) IEUA's normal water regional self-reliance is expected to increase by 25 thousand acre-feet (TAF) from the 2010 baseline; this represents an increase of about 10 percent of 2025 normal water year demands (Table G-2).
- Long-term (2045) IEUA's normal water regional self-reliance is expected to increase by 50 TAF from the 2010 baseline; this represents an increase of about 17 percent of 2045 normal water year demands (Table G-2).
- Near-term (2025) MWD's normal reliance on water supplies from the Delta Watershed is expected to decrease by 300 thousand acre-feet (TAF) from the 2010 baseline; this represents a decrease of about 3 percent of 2025 normal water year demands (Table G-3).

 Long-term (2045) – MWD's normal reliance on water supplies from the Delta Watershed is expected to decrease by 314 thousand acre-feet (TAF) from the 2010 baseline; this represents a decrease of about 5 percent of 2045 normal water year demands (Table G-3).

### **G.4** Baseline and Calculation of Service Area Water Demands

In order to calculate the expected outcomes for measurable reduction in Delta reliance and improved regional self-reliance, a baseline is needed to compare against. This analysis uses a normal water year representation of 2010 as the baseline, which is consistent with the approach described in the Guidebook Appendix C.

Table G-1 shows the total service area water demands for IEUA for 2010 through 2045. These water demands include recycled water and imported water demand on IEUA from its retail agencies. The table also shows reported water use efficiency and calculates the total service area water demands without water use efficiency.

The data sources for the values in this table and calculations are explained below.

### Service Area Demands with Water Use Efficiency Accounted For:

- Baseline (2010) value: The sum of the imported water and recycled water demands, as reported in IEUA's 2010 UWMP, Tables 3-10 and 3-15.
- 2015 value: The sum of the imported water and recycled water demands on IEUA, as reported in IEUA's 2015 UWMP, Table 2-8: IEUA Total Water Demands.
- 2020-2045 values: The sum of imported water and recycled water demands, from IEUA's 2020 UWMP, Table 2-4: Total Water Use (Potable and Non-Potable).

### Reported Water Use Efficiency:

- Baseline (2010) value: No water use efficiency value is estimated to establish a conservative baseline.
- 2015 value: From IEUA's 2015 UWMP, Table 3-1. Only the 2015 value for WUE was selected.
- 2020 value: The volume of savings over the lifetime of water use efficiency measures implemented during FY 19/20, as reported in IEUA's Annual UWE FY19/20 report and detailed in Section 8.8 of IEUA's 2020 UWMP.
- 2025-2045 values: Projected water use efficiency savings, from IEUA's 2020 UWMP, Table 7-2.

The Service Area Water Demands without Water Use Efficiency Accounted For is the sum of the two volumes above for each year.

### G.5 Calculation of Supplies Contributing to Regional Self-Reliance

For a covered action to demonstrate consistency with the Delta Plan, WR P1(c)(1) states that water suppliers must report the expected outcomes for measurable improvement in regional self-reliance. Table G-2 shows expected outcomes for supplies contributing to regional self-reliance both in amount and as a percentage. The numbers shown in Table G-2 represent efforts to improve regional self-reliance for the IEUA service area, focused only on the supplies IEUA manages, which are water use efficiency and water recycling. Supporting narratives and documentation for the all the data shown in the table are provided below:

### Water Use Efficiency

The water use efficiency information shown in Table G-2 is taken directly from Table G-1. It is now reflected as a supply contributing to regional self-reliance.

### Water Recycling

The water recycling values shown in Table G-2 are the recycled water supplies to meet the recycled water portion of the projected "service area water demands with water use efficiency accounted for" shown in Table G-1. These values come from IEUA's 2010 UWMP Table 3-15, IEUA's 2015 UWMP Table 2-8, and IEUA's 2020 UWMP Table 2-4. A description on these water supplies can be found in Section 5.4 – Current Recycled Water Uses in IEUA's 2020 UWMP.

The results shown in Table G-2 demonstrate that IEUA is improving its regional self-reliance, since the volume of water supplies contributing to regional self-reliance are projected to increase over time. In the near term (2025), the expected outcome for normal water year regional self-reliance increases by over 25,000 AF from the 2010 baseline; this represents an increase of about 10 percent of 2025 normal water year demands. In the long term (2045), normal water year regional self-reliance is expected to increase by more than 50,000 AF from the 2010 baseline.

## G.6 Calculation of Reliance on Water Supplies from the Delta Watershed

WR P1(c)(1) requires that water suppliers report the expected outcomes for measurable reductions in supplies from the Delta watershed either as an amount or as a percentage. This analysis provides both calculations.

Although IEUA is currently a SWP-exclusive MWD member agency, it is infeasible to individually account for the independent impact on the Delta. IEUA participates, through MWD, in various water supply investment and demand management programs that reduce reliance on the Delta. Reliance on water supplies from the Delta are taken from MWD's Reduced Delta Reliance assessment (MWD 2020 UWMP, Appendix 11).

Regional reliance on supplies from the Delta watershed are expected to decrease by 314 TAF over the 2010 baseline, a decrease of about 5.2% of 2045 demands. Increased regional self-reliance primarily comes from water use efficiency, conjunctive use projects, water recycling, and local/regional water supply and storage projects. The water supply accounting completed by MWD does not include any supplies from potential future covered actions.

# G.7 Infeasibility of Accounting Supplies from the Delta Watershed for Metropolitan's Member Agencies and their Customers

Metropolitan's service area, as a whole, reduces reliance on the Delta through investments in non-Delta water supplies, local water supplies, and regional and local demand management measures. Metropolitan's member agencies coordinate reliance on the Delta through their membership in Metropolitan, a regional cooperative providing wholesale water service to its 26 member agencies. Accordingly, regional reliance on the Delta can only be measured regionally—not by individual Metropolitan member agencies and not by the customers of those member agencies.

Metropolitan's member agencies, and those agencies' customers, indirectly reduce reliance on the Delta through their collective efforts as a cooperative. Metropolitan's member agencies do not control the amount of Delta water they receive from Metropolitan. Metropolitan manages a statewide integrated conveyance system consisting of its participation in the State Water Project (SWP), its Colorado River Aqueduct (CRA) including Colorado River water resources, programs and water exchanges, and its regional storage portfolio. Along with the SWP, CRA, storage programs, and Metropolitan's conveyance and distribution facilities, demand management programs increase the future reliability of water resources for the region. In addition, demand management programs provide system-wide benefits by decreasing the demand for imported water, which helps to decrease the burden on Metropolitan's infrastructure and reduce system costs, and free up conveyance capacity to the benefit of all member agencies.

Metropolitan's costs are funded almost entirely from its service area, with the exception of grants and other assistance from government programs. Most of Metropolitan's revenues are collected directly from its member agencies. Properties within Metropolitan's service area pay a property tax that currently provides approximately 8 percent of the fiscal year 2021 annual budgeted revenues. The rest of Metropolitan's costs are funded through rates and charges paid by Metropolitan's member agencies for the wholesale services it provides to them. Thus, Metropolitan's member agencies fund nearly all operations Metropolitan undertakes to reduce reliance on the Delta, including Colorado River Programs, storage facilities, Local Resources Programs and Conservation Programs within Metropolitan's service area.

Because of the integrated nature of Metropolitan's systems and operations, and the collective nature of Metropolitan's regional efforts, it is infeasible to quantify each of Metropolitan member agencies' individual reliance on the Delta. It is infeasible to attempt to segregate an entity and a system that were designed to work as an integrated regional cooperative.

In addition to the member agencies funding Metropolitan's regional efforts, they also invest in their own local programs to reduce their reliance on any imported water. Moreover, the customers of those member agencies may also invest in their own local programs to reduce water demand. However, to the extent those efforts result in reduction of demands on Metropolitan, that reduction may not equate to a like reduction of reliance on the Delta. Demands on Metropolitan are not commensurate with demands on the Delta because most of Metropolitan member agencies receive blended resources from Metropolitan as determined by Metropolitan—not the individual member agency—and for most member agencies, the blend varies from month-to-month and year-to-year due to hydrology, operational constraints, use of storage and other factors.

The accounting of regional investments that contribute to reduced reliance on supplies from the Delta watershed is straightforward to calculate and report at the regional aggregate level. However, any similar accounting is infeasible for the individual member agencies or their customers. As described above, the region (through Metropolitan) makes significant investments in projects, programs and other resources that reduce reliance on the Delta. In fact, all of Metropolitan's investments in Colorado River supplies, groundwater and surface storage, local resources development and demand management measures that reduce reliance on the Delta are collectively funded by revenues generated from the member agencies through rates and charges.

Metropolitan's revenues cannot be matched to the demands or supply production history of an individual agency, or consistently across the agencies within the service area. Each project or program funded by the region has a different online date, useful life, incentive rate and structure, and production schedule. It is infeasible to account for all these things over the life of each project or program and provide a nexus to each member agency's contributions to Metropolitan's revenue stream over time. Accounting at the regional level allows for the incorporation of the local supplies and water use efficiency programs done by member agencies and their customers through both the regional programs and through their own specific local programs. As shown above, despite the infeasibility of accounting reduced Delta reliance below the regional level, Metropolitan's member agencies and their customers have together made substantial contributions to the region's reduced reliance.

### **Colorado River Programs**

As a regional cooperative of member agencies, Metropolitan invests in programs to ensure the continued reliability and sustainability of Colorado River supplies. Metropolitan was established to obtain an allotment of Colorado River water, and its first mission was to construct and operate the CRA. The CRA consists of five pumping plants, 450 miles of high voltage power lines, one electric substation, four regulating reservoirs, and 242 miles of aqueducts, siphons, canals, conduits and pipelines terminating at Lake Mathews in Riverside County. Metropolitan owns, operates, and manages the CRA. Metropolitan is responsible for operating, maintaining, rehabilitating, and repairing the CRA, and is responsible for obtaining and scheduling energy resources adequate to power pumps at the CRA's five pumping stations.

Colorado River supplies include Metropolitan's basic Colorado River apportionment, along with supplies that result from existing and committed programs, including supplies from the Imperial Irrigation District (IID)-Metropolitan Conservation Program, the implementation of the Quantification Settlement Agreement (QSA) and related agreements, and the exchange agreement with San Diego County Water Authority (SDCWA). The QSA established the baseline water use for each of the agreement parties and facilitates the transfer of water from agricultural agencies to urban uses. Since the QSA, additional programs have been implemented to increase Metropolitan's CRA supplies. These include the PVID Land Management, Crop Rotation, and Water Supply Program, as well as the Lower Colorado River Water Supply Project. The 2007 Interim Guidelines provided for the coordinated operation of Lake Powell and Lake Mead, as well as the Intentionally Created Surplus (ICS) program that allows Metropolitan to store water in Lake Mead.

IEUA has emergency service connections to the MWD's Upper Feeder, which includes CRA supplies. However, these connections are not currently utilized due to water quality concerns.

### Storage Investments/Facilities

Surface and groundwater storage are critical elements of Southern California's water resources strategy and help Metropolitan reduce its reliance on the Delta. Because California experiences dramatic swings in weather and hydrology, storage is important to regulate those swings and mitigate possible supply shortages. Surface and groundwater storage provide a means of storing water during normal and wet years for later use during dry years, when imported supplies are limited. The Metropolitan system, for purposes of meeting demands during times of shortage, regulating system flows, and ensuring system reliability in the event of a system outage, provides over 1,000,000 acre-feet of system storage capacity. Diamond Valley Lake provides 810,000 acre-feet of that storage capacity, effectively doubling Southern California's previous surface water storage capacity. Other existing imported water storage available to the region consists of Metropolitan's raw water reservoirs, a share of the SWP's raw water reservoirs in and near the service area, and the portion of the groundwater basins used for conjunctive-use storage.

Since the early twentieth century, DWR and Metropolitan have constructed surface water reservoirs to meet emergency, drought/seasonal, and regulatory water needs for Southern California. These reservoirs include Pyramid Lake, Castaic Lake, Elderberry Forebay, Silverwood Lake, Lake Perris, Lake Skinner, Lake Mathews, Live Oak Reservoir, Garvey Reservoir, Palos Verdes Reservoir, Orange County Reservoir, and Metropolitan's Diamond Valley Lake (DVL). Some reservoirs such as Live Oak Reservoir, Garvey Reservoir, Palos Verdes Reservoir, and Orange County Reservoir, which have a total combined capacity of about 3,500 AF, are used solely for regulating purposes. The total gross storage capacity for the larger remaining reservoirs is 1,757,600 AF. However, not all of the gross storage capacity is available to Metropolitan; dead storage and storage allocated to others reduce the amount of storage that is available to Metropolitan to 1,665,200 AF.

Conjunctive use of the aquifers offers another important source of dry year supplies. Unused storage in Southern California groundwater basins can be used to optimize imported water supplies, and the development of groundwater storage projects allows effective management and regulation of the region's major imported supplies from the Colorado River and SWP. Over the years, Metropolitan has implemented conjunctive use through various programs in the service area; the following table lists the groundwater conjunctive use programs that have been developed in the region.

**MWD Table 1: Metropolitan Groundwater Conjunctive Use Programs** 

| Program                                                                        | Metropolitan<br>Agreement<br>Partners | Program Term           | Max<br>Storage AF | Dry-Year<br>Yield<br>AF/Yr |
|--------------------------------------------------------------------------------|---------------------------------------|------------------------|-------------------|----------------------------|
| Long Beach Conjunctive Use<br>Storage Project (Central Basin)                  | Long Beach                            | June 2002-2027         | 13,000            | 4,300                      |
| Foothill Area Groundwater Storage<br>Program (Monkhill/ Raymond Basin)         | Foothill MWD                          | February 2003-<br>2028 | 9,000             | 3,000                      |
| Orange County Groundwater<br>Conjunctive Use Program                           | MWDOC<br>OCWD                         | June 2003-2028         | 66,000+           | 22,000                     |
| Chino Basin Conjunctive Use<br>Programs                                        | IEUA<br>TVMWD<br>Watermaster          | June 2003-2028         | 100,000           | 33,000                     |
| Live Oak Basin Conjunctive Use<br>Project<br>(Six Basins)                      | TVMWD<br>City of La Verne             | October 2002-<br>2027  | 3,000             | 1,000                      |
| City of Compton Conjunctive Use<br>Project<br>(Central Basin)                  | Compton                               | February 2005-<br>2030 | 2,289             | 763                        |
| Long Beach Conjunctive Use<br>Program Expansion in Lakewood<br>(Central Basin) | Long Beach                            | July 2005-2030         | 3,600             | 1,200                      |
| Upper Claremont Basin<br>Groundwater Storage Program<br>(Six Basins)           | TVMWD                                 | Sept. 2005- 2030       | 3,000             | 1,000                      |
| Elsinore Basin Conjunctive Use<br>Storage Program                              | Western MWD<br>Elsinore Valley<br>MWD | May 2008- 2033         | 12,000            | 4,000                      |
| TOTAL                                                                          |                                       |                        | 211,889           | 70,263                     |

### **Metropolitan Demand Management Programs**

Demand management costs are Metropolitan's expenditures for funding local water resource development programs and water conservation programs. These Demand Management Programs incentivize the development of local water supplies and the conservation of water to reduce the need to import water to deliver to Metropolitan's member agencies. These programs are implemented below the delivery points between Metropolitan's and its member agencies' distribution systems and, as such, do not add any water to Metropolitan's supplies. Rather, the effect of these downstream programs is to produce a local supply of water for the local agencies and to reduce demands by member agencies for water imported through Metropolitan's system. The following discussions outline how Metropolitan funds local resources and conservation programs for the benefit of all of its member agencies and the entire Metropolitan service area. Notably, the history of demand management by Metropolitan's member agencies and the local agencies that purchase water from Metropolitan's members has spanned more than four decades. The significant history of the programs is another reason it would be difficult to attempt to assign a portion of such funding to any one individual member agency.

### Section 1: <u>Local Resources Programs</u>

In 1982, Metropolitan began providing financial incentives to its member agencies to develop new local supplies to assist in meeting the region's water needs. Because of Metropolitan's regional distribution system, these programs benefit all member agencies regardless of project location because they help to increase regional water supply reliability, reduce demands for imported water supplies, decrease the burden on Metropolitan's infrastructure, reduce system costs and free up conveyance capacity to the benefit of all the agencies that rely on water from Metropolitan.

For example, the Groundwater Replenishment System (GWRS) operated by the Orange County Water District is the world's largest water purification system for indirect potable reuse. It was funded, in part, by Metropolitan's member agencies through the Local Resources Program. Annually, the GWRS produces approximately 103,000 acre-feet of reliable, locally controlled, drought-proof supply of high-quality water to recharge the Orange County Groundwater Basin and protect it from seawater intrusion. The GWRS is a premier example of a regional project that significantly reduced the need to utilize imported water for groundwater replenishment in Metropolitan's service area, increasing regional and local supply reliability and reducing the region's reliance on imported supplies, including supplies from the State Water Project.

Metropolitan's local resource programs have evolved through the years to better assist Metropolitan's member agencies in increasing local supply production. The following is a description and history of the local supply incentive programs.

### Local Projects Program

In 1982, Metropolitan initiated the Local Projects Program (LPP), which provided funding to member agencies to facilitate the development of recycled water projects. Under this approach, Metropolitan contributed a negotiated up-front funding amount to help finance project capital costs. Participating member agencies were obligated to reimburse Metropolitan over time. In 1986, the LPP was revised, changing the up-front funding approach to an incentive-based approach. Metropolitan contributed an amount equal to the avoided State Water Project pumping costs for each acre-foot of recycled water delivered to end-use consumers. This funding incentive was based on the premise that local projects resulted in the reduction of water imported from the Delta and the associated pumping cost. The incentive amount varied from year to year depending on the actual variable power cost paid for State Water Project imports. In 1990, Metropolitan's Board increased the LPP contribution to a fixed rate of \$154 per acrefoot, which was calculated based on Metropolitan's avoided capital and operational costs to convey, treat, and distribute water, and included considerations of reliability and service area demands.

### Groundwater Recovery Program

The drought of the early 1990s sparked the need to develop additional local water resources, aside from recycled water, to meet regional demand and increase regional water supply reliability. In 1991, Metropolitan conducted the Brackish Groundwater Reclamation Study which determined that large amounts of degraded groundwater in the region were not being utilized. Subsequently, the Groundwater Recovery Program (GRP) was established to assist the recovery of otherwise unusable groundwater degraded by minerals and other contaminants,

provide access to the storage assets of the degraded groundwater, and maintain the quality of groundwater resources by reducing the spread of degraded plumes.

### Local Resources Program

In 1995, Metropolitan's Board adopted the Local Resources Program (LRP), which combined the LPP and GRP into one program. The Board allowed for existing LPP agreements with a fixed incentive rate to convert to the sliding scale up to \$250 per acre-foot, similar to GRP incentive terms. Those agreements that were converted to LRP are known as "LRP Conversions."

### Competitive Local Projects Program

In 1998, the Competitive Local Resources Program (Competitive Program) was established. The Competitive Program encouraged the development of recycled water and recovered groundwater through a process that emphasized cost-efficiency to Metropolitan, timing new production according to regional need while minimizing program administration cost. Under the Competitive Program, agencies requested an incentive rate up to \$250 per acre-foot of production over 25 years under a Request for Proposals (RFP) for the development of up to 53,000 acre-feet per year of new water recycling and groundwater recovery projects. In 2003, a second RFP was issued for the development of an additional 65,000 acre-feet of new recycled water and recovered groundwater projects through the LRP.

### Seawater Desalination Program

Metropolitan established the Seawater Desalination Program (SDP) in 2001 to provide financial incentives to member agencies for the development of seawater desalination projects. In 2014, seawater desalination projects became eligible for funding under the LRP, and the SDP was ended.

### 2007 Local Resources Program

In 2006, a task force comprised of member agency representatives was formed to identify and recommend program improvements to the LRP. As a result of the task force process, the 2007 LRP was established with a goal of 174,000 acre-feet per year of additional local water resource development. The new program allowed for an open application process and eliminated the previous competitive process. This program offered sliding scale incentives of up to \$250 per acre-foot, calculated annually based on a member agency's actual local resource project costs exceeding Metropolitan's prevailing water rate.

### 2014 Local Resources Program

A series of workgroup meetings with member agencies was held to identify the reasons why there was a lack of new LRP applications coming into the program. The main constraint identified by the member agencies was that the \$250 per acre-foot was not providing enough of an incentive for developing new projects due to higher construction costs to meet water quality requirements and to develop the infrastructure to reach end-use consumers located further from treatment plants. As a result, in 2014, the Board authorized an increase in the maximum incentive amount, provided alternative payment structures, included onsite retrofit costs and reimbursable services as part of the LRP, and added eligibility for seawater desalination projects. The current LRP incentive payment options are structured as follows:

- Option 1 Sliding scale incentive up to \$340/AF for a 25-year agreement term
- Option 2 Sliding scale incentive up to \$475/AF for a 15-year agreement term
- Option 3 Fixed incentive up to \$305/AF for a 25-year agreement term

### On-site Retrofit Programs

In 2014, Metropolitan's Board also approved the On-site Retrofit Pilot Program which provided financial incentives to public or private entities toward the cost of small-scale improvements to their existing irrigation and industrial systems to allow connection to existing recycled water pipelines. The On-site Retrofit Pilot Program helped reduce recycled water retrofit costs to the end-use consumer which is a key constraint that limited recycled water LRP projects from reaching full production capacity. The program incentive was equal to the actual eligible costs of the on-site retrofit, or \$975 per acre-foot of up-front cost, which equates to \$195 per acre-foot for an estimated five years of water savings (\$195/AF x 5 years) multiplied by the average annual water use in previous three years, whichever is less. The Pilot Program lasted two years and was successful in meeting its goal of accelerating the use of recycled water.

In 2016, Metropolitan's Board authorized the On-site Retrofit Program (ORP), with an additional budget of \$10 million. This program encompassed lessons learned from the Pilot Program and feedback from member agencies to make the program more streamlined and improve its efficiency. As of fiscal year 2019/20, the ORP has successfully converted 440 sites, increasing the use of recycled water by 12,691 acre-feet per year.

### Stormwater Pilot Programs

In 2019, Metropolitan's Board authorized both the Stormwater for Direct Use Pilot Program and a Stormwater for Recharge Pilot Program to study the feasibility of reusing stormwater to help meet regional demands in Southern California. These pilot programs are intended to encourage the development, monitoring, and study of new and existing stormwater projects by providing financial incentives for their construction/retrofit and monitoring/reporting costs. These pilot programs will help evaluate the potential benefits delivered by stormwater capture projects and provide a basis for potential future funding approaches. Metropolitan's Board authorized a total of \$12.5 million for the stormwater pilot programs (\$5 million for the District Use Pilot and \$7.5 million for the Recharge Pilot).

### Current Status and Results of Metropolitan's Local Resource Programs

Today, nearly one-half of the total recycled water and groundwater recovery production in the region has been developed with an incentive from one or more of Metropolitan's local resource programs. During fiscal year 2020, Metropolitan provided about \$13 million for production of 71,000 acre-feet of recycled water for non-potable and indirect potable uses. Metropolitan provided about \$4 million to support projects that produced about 50,000 acre-feet of recovered groundwater for municipal use. Since 1982, Metropolitan has invested \$680 million to fund 85 recycled water projects and 27 groundwater recovery projects that have produced a cumulative total of about 4 million acre-feet.

#### Conservation Programs

Metropolitan's regional conservation programs and approaches have a long history. Decades ago, Metropolitan recognized that demand management at the consumer level would be an

important part of balancing regional supplies and demands. Water conservation efforts were seen as a way to reduce the need for imported supplies and offset the need to transport or store additional water into or within the Metropolitan service area. The actual conservation of water takes place at the retail consumer level. Regional conservation approaches have proven to be effective at reaching retail consumers throughout Metropolitan's service area and successfully implementing water saving devices, programs and practices. Through the pooling of funding by Metropolitan's member agencies, Metropolitan is able to engage in regional campaigns with wide-reaching impact. Regional investments in demand management programs, of which conservation is a key part along with local supply programs, benefit all member agencies regardless of project location. These programs help to increase regional water supply reliability, reduce demands for imported water supplies, decrease the burden on Metropolitan's infrastructure, reduce system costs, and free up conveyance capacity to the benefit of all member agencies.

Incentive-Based Conservation Programs

### Conservation Credits Program

In 1988, Metropolitan's Board approved the Water Conservation Credits Program (Credits Program). The Credits Program is similar in concept to the Local Projects Program (LPP). The purpose of the Credits Program is to encourage local water agencies to implement effective water conservation projects through the use of financial incentives. The Credits Program provides financial assistance for water conservation projects that reduce demands on Metropolitan's imported water supplies and require Metropolitan's assistance to be financially feasible.

Initially, the Credits Program provided 50 percent of a member agency's program cost, up to a maximum of \$75 per acre-foot of estimated water savings. The \$75 Base Conservation Rate was established based Metropolitan's avoided cost of pumping SWP supplies. The Base Conservation Rate has been revisited by Metropolitan's Board and revised twice since 1988, from \$75 to \$154 per acre-foot in 1990 and from \$154 to \$195 per acre-foot in 2005.

In fiscal year 2020 Metropolitan processed more than 30,400 rebate applications totaling \$18.9 million.

### Member Agency Administered Program

Some member agencies also have unique programs within their service areas that provide local rebates that may differ from Metropolitan's regional program. Metropolitan continues to support these local efforts through a member agency administered funding program that adheres to the same funding guidelines as the Credits Program. The Member Agency Administered Program allows member agencies to receive funding for local conservation efforts that supplement, but do not duplicate, the rebates offered through Metropolitan's regional rebate program.

### Water Savings Incentive Program

There are numerous commercial entities and industries within Metropolitan's service area that pursue unique savings opportunities that do not fall within the general rebate programs that Metropolitan provides. In 2012, Metropolitan designed the Water Savings Incentive Program (WSIP) to target these unique commercial and industrial projects. In addition to rebates for devices, under this program, Metropolitan provides financial incentives to businesses and

industries that created their own custom water efficiency projects. Qualifying custom projects can receive funding for permanent water efficiency changes that result in reduced potable demand.

### Non-Incentive Conservation Programs

In addition to its incentive-based conservation programs, Metropolitan also undertakes additional efforts throughout its service area that help achieve water savings without the use of rebates. Metropolitan's non-incentive conservation efforts include:

- residential and professional water efficient landscape training classes
- water audits for large landscapes
- research, development and studies of new water saving technologies
- advertising and outreach campaigns
- community outreach and education programs
- advocacy for legislation, codes, and standards that lead to increased water savings

### Current Status and Results of Metropolitan's Conservation Programs

Since 1990, Metropolitan has invested \$824 million in conservation rebates that have resulted in a cumulative savings of 3.27 million acre-feet of water. These investments include \$450 million in turf removal and other rebates during the last drought which resulted in 175 million square feet of lawn turf removed. During fiscal year 2020, 1.06 million acre-feet of water is estimated to have been conserved. This annual total includes Metropolitan's Conservation Credits Program; code-based conservation achieved through Metropolitan-sponsored legislation; building plumbing codes and ordinances; reduced consumption resulting from changes in water pricing; and pre-1990 device retrofits.

### Infeasibility of Accounting Regional Investments in Reduced Reliance Below the Regional Level

The accounting of regional investments that contribute to reduced reliance on supplies from the Delta watershed is straightforward to calculate and report at the regional aggregate level. However, any similar accounting is infeasible for the individual member agencies or their customers. As described above, the region (through Metropolitan) makes significant investments in projects, programs and other resources that reduce reliance on the Delta. In fact, all of Metropolitan's investments in Colorado River supplies, groundwater and surface storage, local resources development and demand management measures that reduce reliance on the Delta are collectively funded by revenues generated from the member agencies through rates and charges.

Metropolitan's revenues cannot be matched to the demands or supply production history of an individual agency, or consistently across the agencies within the service area. Each project or program funded by the region has a different online date, useful life, incentive rate and structure, and production schedule. It is infeasible to account for all these things over the life of each project or program and provide a nexus to each member agency's contributions to Metropolitan's revenue stream over time. Accounting at the regional level allows for the incorporation of the local supplies and water use efficiency programs done by member agencies

and their customers through both the regional programs and through their own specific local programs. As shown above, despite the infeasibility of accounting reduced Delta reliance below the regional level, Metropolitan's member agencies and their customers have together made substantial contributions to the region's reduced reliance.

### G.8 2015 UWMP Appendix P

The information contained in this Appendix G is also intended to be a new Appendix P attached to IEUA's 2015 UWMP consistent with WR P1 subsection (c)(1)(C) (Cal. Code Regs. tit. 23, § 5003). IEUA provided notice of the availability of the draft 2020 UWMP (including this Appendix G which will also be a new Appendix P to its 2015 UWMP) and WSCP and the public hearing to consider adoption of both plans and the addendum to the 2015 UWMP in accordance with CWC Sections 10621(b) and 10642, and Government Code Section 6066, and Chapter 17.5 (starting with Section 7290) of Division 7 of Title 1 of the Government Code. The notice of availability of the documents was sent to IEUA's member agencies, as well as cities and counties in IEUA service area. In addition, a public notice advertising the public hearing in English was published in the Inland Valley Daily Bulletin. The notification in English language newspapers was published on 17 May and 24 May 2021. Copies of: (1) the notification letter sent to the member agencies, cities and counties in IEUA service area, and (2) the notice published in the newspapers are included in the 2020 UWMP Appendix E.

Thus, this Appendix G to IEUA's 2020 UWMP, which was adopted with IEUA's 2020 UWMP, will also be recognized and treated as Appendix P to IEUA's 2015 UWMP. IEUA held the public hearing for the draft 2020 UWMP, draft Appendix G as an addendum to the 2015 UWMP, and draft WSCP on June 16, 2021, at the Board of Directors meeting, held online due to COVID-19 concerns. On June 16, IEUA's Board determined that the 2020 UWMP and the WSCP accurately represent the water resources plan for IEUA's service area. IEUA's Board determined that Appendix G to the 2020 UWMP and Appendix P to the 2015 UWMP includes all of the elements described in Delta Plan Policy WR P1, Reduce Reliance on the Delta Through Improved Regional Water Self-Reliance (Cal. Code Regs. tit. 23, § 5003), which need to be included in a water supplier's UWMP to support a certification of consistency for a future covered action. As stated in Resolution No. 2021-06-10, the Board adopted the 2020 UWMP, Appendix G as an addendum to the 2015 UWMP, and the WSCP and authorized their submittal to the State of California. Copies of Resolution No. 2021-06-10 is included in the 2020 UWMP Appendix D.

Table G-1: Calculation of IEUA Service Area Water Demands Without Water Use Efficiency

| Total Service Area Water Demands                                               | Baseline | 1      | 000     | ı       | 000     | L       | 0       | 2045       |
|--------------------------------------------------------------------------------|----------|--------|---------|---------|---------|---------|---------|------------|
| (Acre-Feet)                                                                    | (2010)   | 2015   | 2020    | 2025    | 2030    | 2035    | 2040    | (Optional) |
| Service Area Water Demands with Water Use Efficiency Accounted For*            | 79,440   | 92,325 | 96,934  | 113,280 | 117,752 | 121,438 | 126,072 | 126,664    |
| Reported Water Use Efficiency or Estimated Water Use Efficiency Since Baseline | 1        | 1,975  | 3,292   | 9,788   | 11,984  | 17,257  | 22,570  | 27,802     |
| Service Area Water Demands without Water Use Efficiency Accounted For          | 79,440   | 94,300 | 100,226 | 123,068 | 129,736 | 138,695 | 148,642 | 154,466    |

<sup>\*</sup>Demands include imported and recycled water, as found in 2020 UWMP Table 4-3W

Table G-2: Calculation of IEUA Supplies Contributing to Regional Self-Reliance

| 0                                                                          |                    |        |         |         |         |         |         |                    |
|----------------------------------------------------------------------------|--------------------|--------|---------|---------|---------|---------|---------|--------------------|
| Water Supplies Contributing to Regional Self-Reliance (Acre-Feet)          | Baseline<br>(2010) | 2015   | 2020    | 2025    | 2030    | 2035    | 2040    | 2045<br>(Optional) |
| Water Use Efficiency                                                       | 1                  | 1,975  | 3,292   | 9,788   | 11,984  | 17,257  | 22,570  | 27,802             |
| Water Recycling                                                            | 24,506             | 33,419 | 30,495  | 40,495  | 42,697  | 44,122  | 46,504  | 46,844             |
| Stormwater Capture and Use                                                 | ı                  | 1      | 1       | 1       | I       | 1       | 1       | 1                  |
| Advanced Water Technologies                                                | ı                  | 1      | 1       | ı       | ı       | 1       | 1       | 1                  |
| Conjunctive Use Projects                                                   | ı                  | 1      | 1       | 1       | I       | 1       | 1       | 1                  |
| Local and Regional Water Supply and Storage Projects                       | 1                  | 1      | -       | 1       | ı       | 1       | 1       | 1                  |
| Other Programs and Projects the Contribute to Regional Self-Reliance       | I                  | 1      | -       | I       | I       | 1       | 1       | I                  |
| Water Supplies Contributing to Regional Self-Reliance                      | 24,506             | 35,394 | 33,787  | 50,283  | 54,681  | 61,379  | 69,074  | 74,646             |
|                                                                            |                    |        |         |         |         |         |         |                    |
| Service Area Water Demands without Water Use Efficiency                    | Baseline (2010)    | 2015   | 2020    | 2025    | 2030    | 2035    | 2040    | 2045               |
| (Acre-Feet)                                                                |                    | 000 00 | 100 226 | 173 060 | 170 726 | 120 COE | 110 611 | (Optional)         |
| Service Area water Demands Without Water Ose Efficiency Accounted For      | 79,440             | 94,300 | 100,226 | 123,068 | 129,730 | 138,095 | 148,042 | 154,460            |
|                                                                            |                    |        |         |         |         |         |         |                    |
| Change in Regional Self Reliance                                           | Baseline           | 2015   | 0202    | 3035    | 2020    | 2025    | 0707    | 2045               |
| (Acre-Feet)                                                                | (2010)             | 2013   | 2020    | 2023    | 2030    | 2033    | 2040    | (Optional)         |
| Water Supplies Contributing to Regional Self-Reliance                      | 24,506             | 35,394 | 33,787  | 50,283  | 54,681  | 61,379  | 69,074  | 74,646             |
| Change in Water Supplies Contributing to Regional Self-Reliance            |                    | 10,888 | 9,281   | 25,777  | 30,175  | 36,873  | 44,568  | 50,140             |
| Dougle Officeral to Dougle Dolland                                         | Baseline           |        |         |         |         |         |         | 20AE               |
| (As Percent of Demand w/out WUE)                                           | (2010)             | 2015   | 2020    | 2025    | 2030    | 2035    | 2040    | (Optional)         |
| Percent of Water Supplies Contributing to Regional Self-Reliance           | 30.8%              | 37.5%  | 33.7%   | 40.9%   | 42.1%   | 44.3%   | 46.5%   | 48.3%              |
| Change in Percent of Water Supplies Contributing to Regional Self-Reliance |                    | %2'9   | 2.9%    | 10.0%   | 11.3%   | 13.4%   | 15.6%   | 17.5%              |
|                                                                            |                    |        |         |         |         |         |         |                    |

Table G-3: Calculation of MWD Reliance on Water Supplies from the Delta Watershed

| Water Supplies from the Delta Watershed                                                | Baseline           | 1         |           | 1         |           |           |           | 2045               |
|----------------------------------------------------------------------------------------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------|
| (Acre-Feet)                                                                            | (2010)             | 2015      | 2020      | 2072      | 2030      | 2035      | 2040      | (Optional)         |
| CVP/SWP Contract Supplies                                                              | 1,472,000          | 1,029,000 | 984,000   | 1,133,000 | 1,130,000 | 1,128,000 | 1,126,000 | 1,126,000          |
| Delta/Delta Tributary Diversions                                                       |                    |           |           |           |           |           |           |                    |
| Transfers and Exchanges                                                                | 20,000             | 44,000    | 91,000    | 58,000    | 52,000    | 52,000    | 52,000    | 52,000             |
| Other Water Supplies from the Delta Watershed                                          |                    |           |           |           |           |           |           |                    |
| Total Water Supplies from the Delta Watershed                                          | 1,492,000          | 1,073,000 | 1,075,000 | 1,191,000 | 1,182,000 | 1,180,000 | 1,178,000 | 1,178,000          |
|                                                                                        |                    |           |           |           |           |           |           |                    |
| Service Area Water Demands without Water Use Efficiency (Acre-Feet)                    | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045<br>(Optional) |
| Service Area Water Demands without Water Use Efficiency Accounted For                  | 5,493,000          | 5,499,000 | 5,219,000 | 4,925,000 | 5,032,000 | 5,156,000 | 5,261,000 | 5,374,000          |
|                                                                                        |                    |           |           |           |           |           |           |                    |
| Change in Supplies from the Delta Watershed<br>(Acre-Feet)                             | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045<br>(Optional) |
| Water Supplies from the Delta Watershed                                                | 1,492,000          | 1,073,000 | 1,075,000 | 1,191,000 | 1,182,000 | 1,180,000 | 1,178,000 | 1,178,000          |
| Change in Water Supplies from the Delta Watershed                                      |                    | (419,000) | (417,000) | (301,000) | (310,000) | (312,000) | (314,000) | (314,000)          |
| Percent Change in Supplies from the Delta Watershed (As a Percent of Demand w/out WUE) | Baseline<br>(2010) | 2015      | 2020      | 2025      | 2030      | 2035      | 2040      | 2045<br>(Optional) |
| Percent of Water Supplies from the Delta Watershed                                     | 27.2%              | 19.5%     | 20.6%     | 24.2%     | 23.5%     | 22.9%     | 22.4%     | 21.9%              |
| Change in Percent of Water Supplies from the Delta Watershed                           |                    | %9'L-     | %9.9-     | -3.0%     | -3.7%     | -4.3%     | -4.8%     | -5.2%              |